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Important Note to the Reader:  Many of the review sections in Newtonian Mechanics and Electricity and Magnetism 
are written for both the Advanced Placement B (life science majors) and C (physical science majors) courses.  In these 
reviews the additional Advanced Placement C course information will be boxed within a border that appears like the border 
surrounding this message.  This information is required for AP C students.  Some sections below are targeted only to AP C 
students.  Instead AP Physics B students will do work in Fluids/Thermal Physics, Waves and Optics, and Modern Physics.  
These sections do not apply to AP Physics C students 
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Graphing 
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Fig 1.1d 

 
 
 
 
 
 
 
Fig 1.1e 

 
 
 
 
 
 
 
Fig 1.1f 

Slopes of Curves are an important analytical tool used in physics. Any equation that can be manipulated into the format 
y mx b= +  can be represented and analyzed graphically. As an example:  0v v at= +   can be rearranged slightly into 

0v at v= + .  Compare this equation to the equation of a line. It is apparent that  a  is the slope and that  v0  is the  y-intercept 
(Fig 1.1b and Fig 1.1e). What equation generates velocity in Fig. 1.1a and Fig 1.1d? 

Area Under a Curve is another important graphical tool. Multiply the  y-axis (height) by the  x-axis (base) and 
determine if this matches any known equations. For example: Figures 1.1b and 1.1e are velocity-time plots. Simply multiply  
v t× .  This is a rearranged form of the equation  v x t= .  The form obtained from the graph is  x vt= ,  which means that 
displacement is the area under the velocity-time plot. 
 

Calculus: Required in AP Physics C (optional for AP Physics B students). Calculus is taught in math class. These review 
sheets will focus on the Physics aspect of solutions. Calculus steps may not be shown. Solution will be up to the student. 
The equations outlined in the previous page work well in the following situations. 
• Linear Functions: involving constant velocity and acceleration, as diagrammed in the above graphs (except Fig 1.1d). 
• Nonlinear Functions: scenarios where the problem is seeking information about a change in a quantity, ∆x or ∆v. 
• Nonlinear Functions: scenarios where the problem is seeking an average velocity in an interval. 
Calculus is needed to find the slopes of nonlinear functions and the areas under nonlinear curves. 

1. Velocity: Slope of the displacement-time curve. 
dxv
dt

=  example: 2
0 0 0

1
2

dv x v t at v at
dt
⎛ ⎞= + + = +⎜ ⎟
⎝ ⎠

 0v v at= +  

2. Acceleration: Slope of the velocity-time curve. 
dva
dt

=  example: ( )0
da v at a
dt

= + =  

3. Velocity: Area under acceleration-time curve.  (Note: if  c = v0  cannot be found, then you can only solve for  ∆ v ) 
v a dt= ∫  example: ( )v a dt c at= = +∫  0v v at= +  

4. Displacement: Area under the velocity-time curve.  (Note: if  c = x0  cannot be found, then you can only solve  ∆ x ) 

x v dt= ∫  example: ( ) 2
0 0

1
2

x v at dt c v t at= + = + +∫  2
0 0

1
2

x x v t at= + +  

t t 

v 
v0 

Area under 
curve is  ∆x 

Slope is  a = 0 x 

x0 

Slope is  v a 

a0 
t 

v 
v0 

t 

Area under 
curve is  ∆x 

Slope is  a x 

x0 

t 

Slope is  v 
(tangent line) 

t 

a 
a0 

Area under 
curve is  ∆v 
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Falling Bodies: Objects moving vertically under the influence of gravity. Earth’s surface gravity is  g = –9.8 m/s2.  This 
speeds objects up (+ acceleration), but is directed downward (−). Objects can be thrown up, down, or just be dropped. They 
can land below, at the same height, or above the origin. They come to an instantaneous stop at the highest point in flight. 

0y yv v gt= +  2
0 0

1
2yy y v t gt= + +  ( )2 2

0 02y yv v g y y= + −  

 
The positive and negative signs can cause trouble in these problems. The easiest way to handle the signs is set the direction of 
initial motion as positive and then to ensure all signs are consistent with this decision. This has one huge benefit. It 
eliminated the double sign on acceleration. When initial velocity  v0  is used to anchor direction, then a positive acceleration 
means speeding up and negative acceleration involves slowing down. 

Dropped from rest Thrown downward Thrown upward 
v0 = 0, but it will move down initially v0 is directed downward v0 is directed upward 
Set downward as positive direction Set downward as positive direction Set upward as positive direction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Everything is positive and easy Everything is positive and easy This is difficult, and depends on where 
in the flight the problem ends. 

 
Kinematics Problems Involving Changes in the Magnitude of Acceleration 
If the magnitude of acceleration changes while solving a kinematics problem then the problem must be solved in separate 
parts. Unlike displacement  x  and velocity  v,  the Kinematic equations do not contain the variables  a0  and  a.  

Example 1-3: More than one acceleration 
A car initially at rest accelerates at 4 m/s2 while covering a distance of 100 m. Then the car continues at constant velocity for 
500 m. Finally it slows to a stop with a deceleration of 3 m/s2. Determine the total time of this displacement. 

Acceleration Phase:  21
2

x at=  
( )
( )

2 1002 7 07
4

.xt s
a

= = =   and  ( ) ( )( )0 0 4 7 07 28 3. .v v at m s= + = + =  

Constant Velocity Phase:  xv
t
∆

=  
( )
( )

500
17 7

28 3
.

.
xt s

v
∆

= = =  500t
v

=  

Deceleration Phase:  0v v at= +  
( ) ( )

( )
0 0 28 3

9 43
3

.
.

v v
t s

a
−−

= = =
−

 

Total Time = 7.07 + 17.7 + 9.43 = 34.2 s 
 

+x 
+ 

v = 0 

+v 

+g 
+x 

+ 

+v 

+g 

+v0 

+x +

+v0 

–g 

–x 

x = 0 

–v 

–v 

–v 

+v 

v = 0 
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1−2  Vectors and Vectors in Kinematics 

Scalar: A physical quantity described by a single number and units. A quantity describing magnitude only. 
Vector: Many of the variables in physics equations are vector quantities. Vectors have magnitude and direction. 

Magnitude: Size or extend. The numerical value. 
Direction: Alignment or orientation with respect to set location and system of orientation, such as a coordinate axis. 

Notation: A  or A  The length of the arrow represents, and is proportional to, the vectors magnitude. 
     The direction the arrow points indicates the direction of the vector. 

Negative Vectors: Have the same magnitude as their positive counterpart, but point in the opposite direction. 
If A  then A−  

Vector Addition and subtraction 
Think of it as vector addition only. The result of adding vectors is called the resultant  R . 

A B R+ =  A  + B  = R  
When you need to subtract one vector from another think of the one being subtracted as being a negative vector. 

A B−  is really A B R+ − =e j  A  + ( )B−  = R  

A negative vector has the same length as its positive counterpart, but its direction is reversed. This is very important. In 
physics a negative number does not always mean a smaller number. Mathematically –2 is smaller than +2, but in physics 
these numbers have the same magnitude (size), they just point in different directions (180o apart). 

Vector Addition: Parallelogram 
A + B 

 Tip to Tail 
A + B 

Both methods arrive at the exact same solution since either method is essentially a parallelogram. In some problems one 
method is advantageous, while in other problems the alternative method is superior. 

Reporting Magnitude and Direction:  

Component Method: A vector a can be reported by giving the components along the x- or  
y-axis. Reporting a vector this way is formally done by employing the unit vectors  i  and  j.  As an 
example:  vector  A  in fig 2.2a would be  i jx yA A A= + ,  where,  i j =1+ .  There is at third 

component vector  k  used for three dimensional problems involving the z-axis. The vector in  
Fig. 2.2b shows a numerical application of the component method. In this example you are given the 
polar coordinates  5 37oA at= .  Using trigonometry the components can be established. 

cos 5cos37 4o
xA A θ= = =  and sin 5sin 37 3o

yA A θ= = = .  Then  A  can be expressed 

as follows:  4 3i jA = +  

Polar Coordinates: Vector  A  in Fig. 2.2b is reported in polar coordinates,  5 37oA at= .  This 
is simply the length of a vector and its angle measured counterclockwise with respect to the positive x-axis. (Negative angles 
are allowed and indicate that direction was measured clockwise from the +x-axis. If the component vectors are given,  

4 3i jA = + ,  Pythagorean theorem is used to establish the length of the parent vector  2 2 2 24 3 5x yA A A= + = + = .  

Arctangent is used to find the direction  1 1 3tan tan 37
4

y o

x

A
A

θ − −= = = .  But, watch out!  The angle arrived at by the 

arctangent formula may not be the final answer. The quadrant that the final vector lies in must be established, and an 
adjustment to the angle may be needed in order to provide an answer that extends from the  +x-axis. 

Ax 

Ay
A 

Fig. 2.2a 

Ax 

Ay

A = 5 

37o

Fig. 2.2b 

R
B

A

B

A

B

A 

R
B

A BA BA 

Fig 2.1a 

Fig 2.1b 
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Component Advantage In Vector Addition: 
1. If vector components along an axis are used, direction can be specified with + and  

− symbols. Vectors  A  and  B  in Fig 2.3 have been converted into components.
 ( ) ( )3 4i jA = + + +  ( ) ( )4 3i jB = − + −  

2. This becomes advantageous if vectors  A  and  B  need to be added. 
Find the resultant of the  x  vectors: ( ) ( )3 4 1x x xR A B= + = + + − = −  

Find the resultant of the  y  vectors: ( ) ( )4 3 1y y yR A B= + = + + − = +  

Then combine them to find  R: ( ) ( )2 22 2 1 1 1.41x yR R R= + = − + + =  

Find the direction: ( )
( )

1 1 1
tan tan 45

1
y o

x

R
R

θ − − +
= = = −

−
,  but this a 2nd quadrant angle and must be 

adjusted:  180 45 135o o o− = .  The final vector is has a magnitude of 1.41 and a direction of 135o. 

3. Finding the components simplify problems throughout physics. In Newtonian Mechanics motion, force, and momentum 
often act at an angle to the x- or y-axis. Fortunately these vector quantities can be resolved into component vectors along 
the x- or y-axis. In addition, equations for motion, force, and momentum can be calculated in the x-direction independent 
of what is happening in the y-direction, and vice versa. The first example of this will be projectile motion. In projectile 
motion  there will be a variety of initial and final of velocities at angles. 

Scalar (Dot) Product of Two Vectors: The dot product (A⋅B) of two vectors  A  and  B  is a scalar and is equal to  
ABcosθ.  This quantity shows how two vectors interact depending on how close to parallel the two vectors are. The 
magnitude of this scalar is largest when  θ = 0o (parallel)  and when  θ = 180o  (anti-parallel). The scalar is zero when   
θ = 90o (perpendicular). 

Vector (Cross) Product: The cross product (A×B) of two vectors  A  and  B  is a third vector  C.  The magnitude of 
this vector is  C = ABsinθ.  The direction of this vector is determined by the right-hand-rule. The order that the vectors are 
multiplied is important (not commutative)  If you change the order of multiplication you must change the sign,   
A×B = − A×B.  The magnitude of this vector is largest when  θ = 90o (perpendicular). The vector is zero when  θ = 0o 
(parallel)  or when  θ = 180o (anti-parallel). 

Examples: In the following examples vector  A = 3  and  B = 2.  The direction of vector  A  will vary. 

Vectors  A  &  B Scalar (Dot) Product Vector (Cross Product) 

 ( )( )3 2 cos0 6o =  ( )( )3 2 sin 0 0o =  

 ( )( )3 2 cos30 5.2o =  ( )( )3 2 sin 30 3.0o =  

 ( )( )3 2 cos60 3o =  ( )( )3 2 sin 60 5.2o =  

 ( )( )3 2 cos90 0o =  ( )( )3 2 sin 90 6o =  

 ( )( )3 2 cos120 3o = −  ( )( )3 2 sin120 5.2o =  

 ( )( )3 2 cos150 5.2o = −  ( )( )3 2 sin150 3o =  

 ( )( )3 2 cos180 6o = −  ( )( )3 2 sin180 0o =  

Another way: When cos (parallel) appears in a formula you need two vectors that are parallel (+) or anti-parallel (−). Just 
use your trig skills to find a component of one of the vectors that points in the same direction as the other vector. In the 
examples above, find the component of vector  B  that is parallel to vector  A.  When sin (perpendicular) appears in a 
formula, find  the component of vector  B  that is perpendicular to  vector  A. 
 

+3 

+4 
-4 

-3 

A 

B 

Fig 2.3 
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1−3  Motion in Two Dimensions 

Relative Velocity: Motion in two dimensions, both at constant velocity. A common example is that of a boat crossing a 
river. In figure 3.1, a boat leaves perpendicular to the shore with a velocity of  vB.  The rivers current,  vR,  carries it 
downstream a distance  y.  In figure 3.2 the 
boat aims at an angle of  θ  upstream in 
order to end up straight across. There is a 
triangle formed by the solid velocity 
vectors, and another formed by the dashed 
displacement vectors. These triangles are 
similar triangles. The resultant velocity of 
the boat will be a combination of the boats 
own velocity and current. This vector is 
labeled  Σv.  This is how fast the boat will 
appear to be moving as seen from a 
stationary observation point on shore. When 
calculating the time to cross the stream use 
the velocity vector and displacement vector 

that point in the same direction. In figure 3.1,  B
xv
t

= .  In figure 3.2,  
xv
t

∑ =  

Projectile Motion: Motion in one dimension involves acceleration, while the other is at constant velocity. 
• In the x-direction the velocity is constant, with no acceleration occurring in this dimension. 
• In the y-direction the acceleration of gravity slows upward motion and enhances downward motion. 

Vector Components in Projectile Motion:  The x-direction and the y-direction are independent of each other. 
 
 
 
 
 
 
 
 
 
Now  v0  is at an angle. 

Solve for  v0x: 0 0 cosxv v θ=  then use  v0x  in the kinematic equations to solve for  vx. 

Solve for  v0y: 0 0 sinyv v θ=  then use  v0y  in the falling body equations to solve for  vy. 

vx  and  vy  are component vectors. To find  v,  use Pythagorean Theorem 2 2
x yv v v= +  and arctangent 1tan y

x

v
v

θ −=  

The highest point in the flight: 0x xv v=   and  0yv = .  If the problem ended here these conditions would apply. 

Horizontal Launches 
The launch angle is  0oθ =  0 0 0 0cos cos0o

xv v v vθ= = =  0 0xv v=  

   0 0 0sin sin 0 0o
yv v vθ= = =  0 0yv =  

The above math is not really necessary. Inspection of the Fig 3.4 shows that  v0  is 
directed straight down the x-axis with no y-component vector visible at all. The end of the 
problem is similar to the problem depicted in Fig 3.3, above. 

Coordinate Axis System provides the necessary orientation to handle the following 
variables and their appropriate signs: launch angle, initial velocities in  x  &  y,  final 
velocities in  x  &  y,  final landing height, and final overall velocity. Orientation matters and thus the coordinate axis 
becomes a powerful tool, as depicted on the next page. 

+v0x 

+v0y 
+vx 

v0 

v 
-vy 

+θ 
-θ 

Fig 3.3 

θ 
vB 

vR 

Current moving downstream 

y 

x 

Σv 

Fig 3.1 

θ 

vB 
vR 

Current moving downstream 

y 

x 

Σv 
Fig 3.2 

+vx 

v -vy 

-θ

+v0 

Fig 3.4 
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Initial Launch 
 
 
 
 
 
 
 
 
Fig 3.5 

During the problem 
(At the top vx = vox and vy = 0) 
 
 
 
 
 
 
  
Fig 3.6 

Final Landing 
 
 
 
 
 
 
 
 
Fig 3.7 
+ x Always 
 − y Lands lower than  y0 
y = 0 Lands same height as  y0 
+ y Lands higher than  y0 

Initial displacement 
 0 0x =   
 0 0y =  

Falling bodies: θ = ±90o 
 0 0 cos90 0o

xv v= =  
 

0 0 0sin 90o
yv v v= =  

Horizontal launch: θ = 0o 
 0 0 0cos 0o

xv v v= =  
 0 0 sin 0 0o

yv v= =  

1st quadrant launch: +θ 
 0 0 cosxv v θ=  will be + 
 0 0 sinyv v θ=  will be + 

4th quadrant launch −θ 
 0 0 cosxv v θ=  will be + 
 

0 0 sinyv v θ= will be − 

If it lands at the same height as it 
started (y = y0), then tup = tdown. 

There are two  t’s  for every  y.  The 
shorter  t  is for the upward trip.  The 
longer  t  is for the downward trip. 

Solve for maximum height two ways 
1. From ground up where vy = 0. 

( )2 2
0 02y yv v g y y= + −  

2. Or the easy way. Start at the top and 
pretend it is a falling body.  vx  
doesn’t matter since time is 
controlled by the  y-direction. And 
at the top  voy  is zero. However, this 
solves for half of the total flight. 

21
2

y gt=  Must double time! 

ax = 0 No  a  in the  x-direction 
 0x xv v=  
What is it doing at the end of the 

problem in the y-direction? 

yv±  

It is usually moving downward at 
the end of the problem. 
So  vy  is usually negative 

The final  v  must be resolved. 
 2 2

x yv v v= +  

If 0y y=  
 0y yv v= −  & 0v v=  

Projectile Motion Strategies 
1. Horizontal Launch: Since  v0y = 0  and  v0x = v0,  then use  21 2y gt=   and  

0 xx v t= . 

2. When time (t) or range (x) is given: Start with 
0 xx v t=  and then 2

0 0 1 2yy y v t gt= + + . 

3. No  x  and  no  t: Time is the key to falling body & projectile problems.  Two strategies are useful when time is missing. 

 1st 2
0 0 1 2yy y v t gt= + +  

2nd Quadratic Equation 

3rd 0 xx v t=  

1st ( )2 2
0 02y yv v g y y= + −  solve for   vy  which is usually negative. 

2nd 
0y yv v gt= +  use  -vy  from above to get  t. 

3rd 
0 xx v t=  use  t  from above to solve for range  x. 

Other Projectile Motion Facts 
Any two launch angles that add to 90o will arrive at the same landing site if fired on level ground.  Examples:  15o and 75o,  
30o and 60o,  and 40o and 50o.  Maximum range (maximum distance in the  x-direction) is achieved by launching at 45o (45o 
+ 45o = 90o).  Maximum altitude (maximum distance in the  y-direction) is achieved by firing straight up, at 90o. 

Circular Motion 
Frequency: How often a repeating event happens. Measured in revolutions per second. 
Period: The time for one revolution, 1T

f
= .  Time is in the numerator. 

Velocity: In uniform circular motion the magnitude (speed) of the object is not changing. However, the 
direction is constantly changing, and this means a change in velocity (a vector composed of both magnitude 
and direction). In circular motion one can describe the rate of motion as either a speed or as a tangential 

velocity 2 rv
T
π

= .  This velocity is an instantaneous velocity and it is directed tangent to the curve. 

Centripetal Acceleration: The object is continually turning toward the center of the circle, but never gets there due to its 

tangential velocity. This centripetal (center seeking) change in velocity, is a centripetal acceleration 
2

c
va
r

=   

+v0x , +v0y = 0 

+v0x , -v0y 

+v0x , +v0y 

-v0y 

+v0y 

v 

+vx 

-vy 

vx = v0x 

y 

2 t 's 

v

ac 

Fig 3.8 
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1−4  Newton’s Laws of Motion and Force Vectors 

Force: Any push or pull. 

Newton’s 1st Law: Law of inertia, a restatement of Galileo’s principle of inertia.  Inertia is controlled by mass, the more 
mass the more inertia.  Essentially an object at rest wants to stay at rest, while an object in motion wants to stay in motion. 

Newton’s 2nd Law: F ma∑ = .  The Greek sigma proceeding  F  is the mathematical notation for taking a sum.  In 
reality there are countless forces interacting with every object in the known universe.  When an object is standing still or 
moving at constant velocity all of these forces are counteracting and neutralizing each other.  If a single additional force is 
applied (applied force) it can upset this balance forcing the object to change its inertia and accelerate.  But, there may be 
more than one of these applied forces acting in a physics problem.  These applied vector forces need to be added before a 
determination of the objects acceleration can be made. 

Net Force: F ma∑ =  

xF∑  is F∑ in the x-direction on the coordinate axis. yF∑  is F∑ in the y-direction on the coordinate axis. 

F∑  is the F∑ parallel to a slope. F⊥∑  is the F∑ perpendicular to a slope. 

Newton’s 3rd Law: When two entities interact there is an equal and opposite force exerted on each object.  Forces come 
in action-reaction pairs.  For every action force there is an equal & opposite reaction force (not an equal and opposite 
reaction).  The reaction that is seen also depends on the mass of the object.  If a high mass object encounters a low mass 
object, the one with less mass appears to be effected the most (either moves radically or sustains the most damage).  This is 
due more to its low mass, since the force on both objects is the same. 

Common Forces:  In addition to the forces below,  Fany subscript that makes sense,  can be used. 
There are many vectors in physics: displacement, velocity, acceleration, force, momentum, gravity fields, electric fields, 
magnetic fields, etc.  The last three mentioned, gravity, electricity, and magnetism are field forces.  These are normally 
associated with invisible force fields.  When you push on a box the force is visible and obvious.  Gravity pulling down on the 
box, toward earth, is not visible and not as obvious.  These invisible forces are called field forces and motion is along the 
field lines.  Often these field forces are not specifically mentioned, but they are implied by the conditions in the problem. 

F∑  F ma∑ =  Sum of Force for linear motion, not used in circular motion. 

1F , 2F , …  Applied Force, some kind of push or pull. 

gF   or  W  gF mg=  Force of Gravity which is also known commonly as Weight. 

T   Tension is the force that acts along strings, ropes, chains, etc. 

N  cosN mg θ=  Normal Force: A contact force that exists when surfaces touch.  It is always 
perpendicular to the surface.  The angle  θ  refers to the angle of a sloping surface.  On 
flat surfaces  0oθ =   and  cos 0 1o = ,  so  N mg=   .  However, this shortcut is only 
true as long as there are no applied forces or components of applied forces 
perpendicular to the surface.  Additional  y-forces or  y-components of force can make 
the normal force one of the most difficult forces.  See Ex. 4.4 on page 8. 

f   or  frF  f Nµ=  Force Friction: A combination of the roughness of the surface,  µ ,  and the amount of 
force pushing the surfaces against each other (the normal force),  N . 

cF  c cF ma=  Force Centripetal: Sum of force for circular motion, not used in linear motion. 

EF  EF qE=  Force of Electricity 

BF  BF qvB=  

BF BI=  
Force of Magnetism on a charge moving in a magnetic field. 
Force of Magnetism on a current carrying wire in a magnetic field. 

From a vector stand point, it does not matter what the exact force is when solving force problems.  A force is a force is a 
force.  The variable changes,  Fg, T, N, Fc, FE, FB, or F1, F2, F3,  but it is still force.  And when we finish with forces and 
move to momentum the letter will change to  p  instead of  F,  but the vector problem solving technique remains the same. 
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Free Body Diagram: Imagine that you are looking down at a box from above, and that 
four people are pulling on ropes in the direction of the four arrows in Fig. 4.1.  A diagram 
that just shows the object and the forces immediately acting on the object (and nothing else) 
is known as a free body diagram.  As drawn the length of each force vector is an indication of 
its strength.  Obviously persons 1 and 4 are stronger than 2 and 3.  In free body diagrams the 
arrows do not have to be drawn proportionally, they just need to be pointing the correct way 
and be correctly labeled.  The vectors are drawn coming out of the body.  This allows an 
imaginary coordinate axis, shown in Fig. 4.1 by the dashed lines, to be superimposed through 
the center of the object.  This is used to reference the direction of each force vector.  Vector 
direction is simplified as  +  and  −  signs can be used to indicate direction along any axis.  (In 
vector math the magnitudes +2 and –2 are equal.  They are just opposite in direction.) 

Hints to Complete Successful Free Body Diagrams 
1. Identify any invisible force fields like gravity, electricity, and magnetism.  Gravity is in every problem and points down. 
2. If there is a string or rope, a force of tension exists along the string or rope and it is directed away from the object. 
3. If there is a surface or contact point, there is a normal force directed away from and perpendicular to the surface. 
4. Applied forces are the most obvious.  They are in the text of the problem and may also be in any diagrams if provided. 

Finding the Force Resultant (Sum of Force) in Various Situations 

Example 4-1: All Vectors Lie Along an Axis. 
Look at Fig. 4.1 and suppose that  F1 = 5 N, F2 = 2 N, F3 = 2 N, F4 = 5 N. 
1. Draw a Free Body Diagram (FBD), as shown in Fig. 4.1. 
2. Write vector sum equation in any relevant direction(s). 1 2xF F F∑ = −  3 4yF F F∑ = −  

3. Substitute known equations and/or values. 5 2 3xF∑ = − =  2 5 3yF∑ = − = −  

4. Solve. 3xF∑ =  3yF∑ = −  

5. If needed: Resolve components into a resultant. ( ) ( )2 22 2 3 3 4.24x yF F F N∑ = + = + − =  

6. If needed: Solve for the direction. 
( )
( )

1 1 3
tan tan 45

3
oy

x
θ − − −
= = = −  

Example 4-2: Converting Vectors at Angles Into Components on the Coordinate Axis. 
In Fig 4.2, suppose that  F1 = 5 N at 40o, F2 = 2 N at 230o, F3 = 2 N at 70o, F4 = 5 N at –60o. 

1. Draw a FBD, as shown in Fig. 4.2. 
2. State the vector sum equation in direction that matters 

1 2 3 4x x x x xF F F F F∑ = + + +  1 2 3 4y y y y yF F F F F∑ = + + +  

3. Substitute known equations and/or values 
1 2 3 4cos cos cos cosxF F F F Fθ θ θ θ∑ = + + +

 1 2 3 4sin sin sin sinyF F F F Fθ θ θ θ∑ = + + +  

5cos 40 2cos 230 2cos 70 5cos 60o o o o
xF∑ = + + + −  5sin 40 2sin 230 2sin 70 5sin 60o o o o

yF∑ = + + + −  

4. Solve 5.73xF N∑ =  0.769yF N∑ = −  

5. If needed: Solve for the total with Pythagorean theorem ( ) ( )2 22 2 5.73 0.769 5.78x yF F F N∑ = + = + − =  

6. If needed: Solve for the direction ( )
( )

1 1 0.769
tan tan 7.64

5.73
oy

x
θ − − −
= = = −  

 F1 F2 

F3 

F4 

Fig. 4.1 

 F1 F2 

F3 

F4 

Fig. 4.2 
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Example 4-3: Using a Flexible Coordinate Axis System. 
It will be easier in more complex problems if we set the direction that an object is moving to be positive.  Once this direction 
is declared as positive all vectors pointing that way are positive, and those in the opposite direction are negative. 

x-direction: 
 If object is moving right then, If object is moving left, then 
 direction of motion is right. direction of motion is left. 
 Right vectors are positive. Left vectors are positive. 
 1 2 3xF F F F∑ = − −  2 3 1xF F F F∑ = + −  

y-direction: 
 If object is moving up, then If object is moving down, then 
 direction of motion is up. direction of motion is down. 
 Up vectors are positive. Down vectors are positive. 
 1 2 3xF F F F∑ = − −  2 3 1xF F F F∑ = + −  

Note: The force vectors have already been assigned as positive and negative.  So, plug in only positive numbers, such as   
g = +9.8.  Do not plug in negatives, like,  −9.8,  as this will reverse the vector direction decided in the sum of force equation. 

Falling Bodies and Projectile Motion Revisited: Try the above method for a falling body that is dropped at rest, 
or a projectile that is fired horizontally or downward.  A vector is a vector, so whether it is force, velocity, or acceleration etc. 
use the same technique.  A falling body is moving downward.  So set the direction of motion as positive, thus down becomes 
positive.  Any vector pointing down is now positive. 

21
2

y gt=   Both  g  and  y  point down and are positive.  Everything is now positive.  You are in charge of the problem.  It 

does not matter what direction is positive.  It matters that there is sign consistency.  If down is defined to be positive then any 
vector pointing upward better have a positive.  The beauty of using the direction of motion as positive and assigning plusses 
and minuses to the vector quantities is that you get to plug in positive values.  (This is difficult to do in a falling body or 
projectile motion problem that travels in one direction(up) at the start of the problem and another direction (down) at the 
end of the problem.  For these problems it may be easier to use the rigidly defined coordinate axis system with  g  as  -9.8 
that you have previously learned). 

Example 4-4: Deciding On The Relevant Direction. 
Suppose a 10.0 kg box, in Fig. 4.4, is pulled along a flat surface by a 20.0 N force at a 30.0o angle 
with the horizontal.  This problem is a little different than the previous ones.  The  x-direction and 
the  y-direction are doing different things.  The object is accelerating in the  x-direction, while it is 
not moving in the  y-direction.  We can solve for the acceleration and for the normal force using the 
sum of forces in the relevant direction for each of these quantities. 
1. Draw a FBD 
2. Find the vector sum equation(s).  This box will accelerate in the  x-direction, so if acceleration data is requested, sum the 

forces in the  x-direction.  If the problem asks for a force in the  y-direction, such as force normal, sum the forces in the  
y-direction. 
 x xF F∑ =  y y gF N F F∑ = + −  

3. Ask yourself what the object is doing in the relevant direction.  There are three choices: 
1.  Standing still,  a = 0. 2.  Constant velocity,  a = 0. 3.  Accelerating,  a = a. 
This problem is accelerating in the  x-direction, while standing still in the  y-direction. 

4. Substitute known equations and values.  The known equations come from the table on page 6. 
 cosxma F θ=  sinyma N F mgθ= + −  

 10.0 20.0cos30o
xa =  ( ) ( )( )10.0 0 10.0sin 30 10.0 9.8oN= + −  

5. Solve 
20.0cos30

10.0

o

xa =  ( )( )10.0 9.8 10.0sin 30oN = −  

 21.73xa m s=  93.0N N=  

 

F1 F3 

F2 

F1 

F3 F2 

Fig 4.3a 

Fig 4.3b 

 

Fg 

FN 

F 

Fig. 4.4 
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What Is The Object Doing?  It is critical to know how the object is moving. 
1. Inertia:  The object is following the principle of inertia.  It lacks acceleration. 

a. Constant Velocity:  0a = ,  which means that  0F ma∑ = = . 

b. Standing Still:  0a = ,  0F ma∑ = = .  Standing still,  0v = ,  is just a constant velocity that happens to be zero. 

2. Accelerating:  F ma∑ = .  a  is solved using this equation, or by other means and then is plugged into this equation. 

Example Scenario: 

1. Standing still in a car: 0v∆ =  0a =  0F ma∑ = =  Inertia. 

2. Step on gas peddle: v∆ = +  a = +  engineF F ma∑ = = = +  Accelerates. 
Initially there is only one applied force acting in this problem, and it is the cars engine (really it is friction between tires 
and road).  This force is in the direction of motion and is a positive force causing positive acceleration.  But as soon as 
the car starts moving it experiences air resistance.  It will continue to accelerate as long as the sum of force is positive. 
 v∆ = +  a = +  engine airF F F ma∑ = − = = +  Accelerates. 

3. Reach cruising speed: 0v∆ =  0a =  0engine airF F F ma∑ = − = =  Inertia. 
Why did it reach a constant velocity with the gas peddle still pressed?  The car encounters air resistance, a second force.  
Air resistance is in the opposite direction and is negative.  At first the air resistance is small, but grows until it equals the 
force of the engine.  Adding the positive force of the engine to the now equal negative force of air resistance results in a  

0F ma∑ = = ,  and inertia / constant velocity takes over.  Note: equal and opposite force does not mean that the car 
stops.  It continues doing whatever it was last doing, i.e., it moves with the final velocity from the acceleration phase. 

4. Step on the brake: v∆ = −  a = −  brake airF F F ma∑ = − − = − = −  Decelerates. 
The brakes (again, really friction) apply a force that opposes the direction of motion.  Now there are two forces slowing 
the car.  These negative forces decelerate the car. 

5. Stopped: 0v∆ =  0a =  0F ma∑ = =  Inertia. 

Example 4-5: Balanced Forces 
The forces parallel to the relevant direction add to a sum of force of zero. 
As an example: All the forces in the Fig. 4.5 are parallel to the  x-axis. 

The sum of force is: 1 2 3 4F F F F F∑ = + − −  

 3 2 4 1 0F∑ = + − − =  
The object does not accelerate, but rather has constant velocity (which includes  v = 0). 
This implies that constant velocity and standing still are the result of balanced forces, and this can be used as a shortcut. 

What if the problem were worded differently? 

The box in Fig. 4.6 is moving at constant velocity.  What is  F4 ? 

Constant velocity implies that  0F ma∑ = = . 
Now we know that this implies a balanced force scenario as well. 

Solve using the sum of forces approach. Solving using balance force approach. 

1 2 3 4F F F F F∑ = + − −  All the forces in one direction (added together) must equal all the 

1 2 3 40 F F F F= + − −  forces in the opposite direction (added together). 

1 2 3 4F F F F+ = +  1 2 3 4F F F F+ = +  

4 1 2 3F F F F= + −  4 1 2 3F F F F= + −  

4 3 2 4F = + −  4 3 2 4F = + −  

4 1F =  4 1F =  

The balanced force approach is faster, as it eliminates the first two steps.  However, when an object is accelerating balanced 
forces do not apply, and the problem must start with a sum of forces equation. 
 

F1 = 3N 

F2 = 2N 

F3 = 4N 

F4 = 1N 

Fig. 4.5 

F1 = 3N 

F2 = 2N 

F3 = 4N 

F4 = ? 

Fig. 4.6 
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1−5  Applications of Force 

Strategy for Force Problems 
1. Draw FBD. 
2. Decide direction of motion.  Considered this the positive direction.  If the object does not move, ask which direction it 

would move if it were free to do so, and set this as the positive direction. 
3. Which direction matters, the  x  or the  y-direction?  What is it doing in the direction that matter? 
4. Construct  F∑   equations in the relevant direction, by looking at the FBD.  Any force vectors or components of force 

vectors pointing in the direction of motion are positive while any vectors or components opposing motion are negative.   
5. Substitute known equation,  F ma∑ = ,  gF mg= ,  from the table on page 6, into the sum of force equation. 

6. Plug in values and solve.  All values including 9.8 are positive since the plusses and minuses have already been decided. 

Example 5-1: Static Force Problems, and Force Triangles 
In beginning physics many force problems contain a force triangle. 
A mass is suspended by two strings from the ceiling, as shown in Fig 5.1a.  
Fig. 5.1b is the FBD.  In Fig 5.1c the tensions are separated into  x  and  y  
components.  Sum the forces in the  x  and    y-directions separately.  The 
sum of force will be equal to zero. 

2 1x x xF T T∑ = −  1 2x xT T=  

1 2y x y gF T T F∑ = + −  1 2x y gT T F+ =  

Under the right circumstances the three force vectors form a right triangle when added tip to tail.  
Note the 30o and 60o angles above.  The forces complete the 30-60-90 triangle shown in  
Fig 5.1d.  The sum of force is zero.  Tensions can be calculated using SOH CAH TOA and 
Pythagorean Theorem. 

1 cos30o
gT F= 2 sin 30o

gT F=  or 1 sin 60o
gT F= 2 cos 60o

gT F=  

 

Example 5-2: Lawn Mower 
An old fashioned lawnmower is pushed with 90N at a 45o angle against a horizontal retarding force.  
Fig 5.2a is the FBD, while Figure 5.2b is a diagram of horizontal and vertical component vectors 
Solve for the Retarding Force 

.x x retF F F∑ = −  .0 x retF F= −  . 90 cos45 63.6o
ret xF F N N= = =  

Solve for the Normal Force 

y y gF F N F∑ = − + −  

y y gN F F F= ∑ + +  ( ) ( )( )20 90 sin 45 16 9.8 220oN N kg m s N⎡ ⎤= + + =⎣ ⎦  

Solve for F to accelerate from rest to 1.5 m/s in 2.5 s 

ox x xv v a t= +  21.5 0 0.6
2.5

ox x
x

v v
a m s

t
− −

= = =  ( )( )216 0.6 9.6x xF ma kg m s N∑ = = =  

You need this force to accelerate, but you still need to overcome the retarding force. 

.x x retF F F∑ = −  . 9.6 63.6 73.2x x retF F F N N N= ∑ + = + =  
But you aren’t pushing in the  x-direction.  You need the push at 45o to generate 73.2 N in the  x-
direction. 

cos 45o
xF F=  73.2 104

cos 45 0.707
x

o

F NF N= = =  

Apparent Weight: When you ride in an elevator upward you will feel heavier when the elevator accelerates and lighter 
as it slows to a stop.  When riding downward you will feel lighter when it accelerates and heavier when it stops.  When you 
ride a roller coaster you experience the same sensations when moving up and down.  On “Superman the Ride” you can 
actually feel weightless.  Astronauts and pilots experience these same sensations when moving away or toward the center of 
the earth (or the moon).  Astronauts also feel weightlessness as well.  This effect is not limited to the vertical or  y direction.  

30o 60o

Fg 

T2 T1 

Fg 

T2 

T1 

Fig 5.1a 

Fig 5.1b Fig 5.1c 

Fret.

Fg 

N 
F 

Fig 5.2a 

Fret.

Fg 

N 

Fx 

Fig 5.2b 

Fy 

Fg 

T2 

T1 Fig 5.1d 

60o

30o
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When you “step on it” in a car you feel yourself pressed into the seat, and when you panic stop you feel yourself thrown 
forward.  These sensations have the same characteristics as gravity or weight.  Up to now we have analyzed the motion of the 
car, the plane, the rocket, etc. using straight forward force and kinematics.  With apparent weight we are dealing with a false 
force that the passenger feels.  The effect is really created by the passenger’s inertia.  When you “step on it” you don’t sink 
into the car seat.  You actually follow inertia and stay at rest, while the car hits you from behind.  The real acting forces are 
the opposite of what our brain thinks.  To analyze this feeling of force for a passenger we need apparent weight.  Apparent 
weight is the weight that would show on a bathroom scale if you were between you and the surface causing the force.  
Contact with any surfaces is a normal force and bathroom scales measure normal force.  So weight apparent is also  FN. 

g apparent
F mg ma= ±  This equation adds the acceleration of a passenger’s vehicle to the real weight. 

x direction: g x xapparent x
F mg ma= ± , but with no g in the x direction g xapparent x

F ma= ±  

Positive: accelerating, you feel heavier.  Negative: decelerating, you feel lighter. 
y direction: g y yapparent y

F mg ma= ± , so acceleration adds / subtracts from the real / actual weight. 

Positive: moving away from the center of gravity (up or away from Earth).  Negative: moving toward the center of 
gravity. 

Why do you feel weightless on “Superman the Ride”?  Because, the acceleration is downward and matches gravity. 
( ) ( ) 29.8 9.8 0g y yapparent y

F mg ma m m m s= ± = − =  

g’s: The acceleration of gravity can also be expressed in g’s.  21 9.8g m s=   This is commonly used in flight 

terminology. 

Example 5-3: Compound Bodies, One Dimension 
These problems have two or more masses connected by a string or pressed against each other. 
In Fig 5.3a a force  F  presses against block  1  which presses with a normal force against block  2  
which then presses with a normal force on block  3. 

If all the blocks are the same mass what is the acceleration of the blocks?  Simply treat all the masses as one larger block, 
and remember to use the sum of force to find acceleration. 

systemF F∑ =  systemm a F=  ( )1 2 3m m m a F+ + =  
( )1 2 3

Fa
m m m

=
+ +

 

How much force  F  is acting on each block?  The force will distribute proportionally based on mass.  If the blocks are of 

equal mass then the force on each of the three blocks will be one third. 1 3
FF =  2 3

FF =  3 3
FF =  

If the blocks do not have the same mass then you must distribute the force using the mass ratio. 

How much force is acting at the boundary between the blocks?  This force is a normal force as it is created by surface 
contact.  Block  1  requires one third of  F  to move.  So two thirds of  F  remain to push blocks  3  and  4.  The force at the 
boundary between blocks  1  and  2  is two thirds  F, and this is the force needed to push the blocks behind the boundary.  
The last block  C  only requires one third of force  F  and thus the force at the boundary between blocks  B  
and  C  is one third  F.  This may make more sense when examined vertically.  If the same blocks are stacked 
on a table one could imagine that they are gymnasts standing on each other’s shoulders.  How much of the 
total force  F  is felt on the bottom gymnasts feet?  All of the force.  How much is at the boundary?  The 
boundary can be analyzed from either surface of contact.  If we look at the bottom gymnasts shoulders, he 
must push up with  2/3 F  to hold  2/3 m.  The middle gymnasts feet must support his own weight and that of 
the gymnast above, so his feet must push with  2/3 F.  No matter how you look at the boundary you arrive at 
the same answer.  The boundary between the middle and top gymnast is  1/3 F, as the middle gymnast 
shoulder and top gymnasts feet only need to support the top gymnasts  1/3 m. 

The problem is exactly the same if the blocks are tied by strings and hanging from the ceiling.  Only now we solve for 
tension instead of force normal, and the gymnasts are hanging from a cliff.  If the top rope (top arm) in 
Fig 5.3c has a tension of  F,  what is the tension between blocks  1  and  2?  2/3 F.  The top gymnast 
lower arm and the middle gymnasts upper arm both have to support  2/3 m.  How much tension is in the 
rope between blocks  2  and  3?  1/3 F 

Fig 5.3a 

m1 m2 m3

F 

Fig 5.3b 

m3 

m2 

m1 

Fig 5.3c 

m3 

m2 

m1 
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Compound Bodies in Two Dimensions: These problems have two or more masses 
connected by a strings and involve pulleys.  Pulleys are devices that change the direction of 
force.  The pulleys in the following examples will be considered massless and frictionless, and 
as a result they do not change the magnitude of force.  As two dimensions are involved 
simultaneously the assignment of positive and negatives on the various forces can be tricky.  
The easiest method to achieve sign consistency throughout a complex problem is to identify the 
direction the masses are moving, or the direction they are most likely to move.  Set the 
direction of motion as positive, as shown in the top figure to the right.  Every vector in the 
direction of motion will be considered positive.  Those opposed to the direction of motion are 
negative.  If you are not sure what the direction of motion will be, take a guess.  If you calculate 
a negative value for acceleration, you were wrong, the masses actually moved in the direction 
opposite your prediction.  A very useful shortcut is to reorient the problem into one dimension.  Pulleys are devices that 
change the direction of force.  So pretend the pulley is not there, as shown in the figure at the bottom right. 

Example 5-4: Compound Body Moving in Two Dimensions 
Solve for acceleration: Fig 5.4a shows the scenario.  As there are two masses there are two 
FBD’s shown in Fig 5.4b.  Fig 5.4c is an informal sketch of connected boxes.  Use this sketch 
and the combined mass method to solve for overall acceleration.  Remember, when you use 
the combined method you must total all the masses for the sum of force.  Fg  and  FN  acting 
on mass  A  are perpendicular to motion.  They cancel each other.  Fig 5.4c shows that the 
tension in the rope also cancels.  It is the same rope so the value at both ends is the same and 
the direction of tension is opposite.  So tension cancels in the shortcut to find acceleration. 

AB g BF F∑ =  ( )A B Bm m a m g+ =  
( )

B

A B

m ga
m m

=
+

 

Solve for the tension in the rope: In order to solve for tension you need a formula with 
tension in it.  You must solve for one of the masses by itself.  Solve for either body.  On tests 
choose the easy one, this will usually be the hanging mass. 

A frAF T F∑ = −  or B gBF F T∑ = −  

A AT m a m gµ= +   B BT m g m a= −  

Plug the acceleration from part one into either equation above and you will get the same final answer. 

Example 5-5: Atwood Machine: Atwood created a device to artificially slow the 
acceleration of gravity.  In Fig 5.4a it doesn’t say which mass is greater.  I picked the two 
masses  B  and  C as the more massive side and used this to set the direction of motion. 
Solve for acceleration: The FBD’s for all blocks are shown in Fig 5.5b.  Use the 
combined mass method to solve for overall acceleration.  Remember, when you use the 
combined method you must total all the masses for the sum of force.  In addition it is easier 
if you treat blocks  B  and  C  as though they are one larger block having a single mass.  
Fig 5.5c is a sketch of the masses as a linear problem, with the left masses combined. 

ABC g BC g AF F F∑ = −  

( ) ( )A B C B C Am m m a m m g m g+ + = + −  ( )
( )

B C A

A B C

m m g m g
a

m m m
+ −

=
+ +

 

If asked for the tension in the rope connecting mass  A  and  B  you must sum the forces 
for any block connected to the rope.  A problem might only give information for one of 
the two blocks, or one of the blocks will be much simpler to solve.  Learn to identify the 
easy block.  If more than one mass is suspended by a rope, then add the masses suspended 
by the rope.  This is the case for blocks  B  and  C.  Both of the possible solutions are 
detailed, one using block  A  on the left, and the other using blocks  B  and  C  to the right. 

A gAF T F∑ = −  or BC gBCF F T∑ = −  

A gAT F F= ∑ +   gBC BCT F F= − ∑  

A AT m a m g= +   ( ) ( )B C B CT m m g m m a= + − +  

Plug in the acceleration from above to solve for  FT.  To solve for the tension in the rope between block  B  and  C,  just use 
the mass of block  C.  Refer to the right most FBD in Fig 5.5b. 

C gCF F T∑ = −  gC CT F F= − ∑  C CT m g m a= −  

Fig 5.4c 
Fg 

FN 

+Fg-T +T 

+Fg

-T 

Fg 

+T 

Fig 5.4a 

Fig 5.4b 

A 

B

A B 

A B 

A 

B

Direction of Motion

+ 

A B

Direction of Motion
+ 

B 

C 

A

Fig 5.5a 

-FgA +T -T+FgBC 

Fig 5.5c 

-T +T 

-FgA 

Fig 5.5b 

+FgB 

B A 

+T

-FgC 

C 



Revised 8/29/06 16 © R H Jansen 

Force Gravity on Slopes: Motion on a slope is parallel to the slope.  Fg  is then at an 
angle to this motion.  Any vector at an angle to motion should be split into components 
parallel and perpendicular to the chosen orientation (direction of motion).  In this case  Fg  
should split into  Fg ||  and  Fg ⊥  to the slope.  Fg  is actually pulling the block into the slope 

cosg gF F θ⊥ =  and down the slope sing gF F θ= . 

But the block is not moving perpendicular to the slope, so the sum of forces in the 
perpendicular direction is zero.  If gravity is pulling the block into the slope then the slope 
must push back with an equal and opposite force.  Any force involving contact with a 
surface is call a Normal Force, N.  In slope problems cosgN F θ= .  

When a block moves on a flat surface the slope angle is 0o.  Plug 0o into 
the  N  equation and it reduces to gN F= .  This is an abbreviation for  

N  that works only on flat surfaces.  The component of gravity parallel 
to the slope sing gF F θ=  is then left over.  Fg ||  is the resultant 

when  Fg  and  N  are added by vector addition. This is the force of 
gravity that can accelerate objects down slopes. 

Example 5-6: Combined Bodies and Slopes 
Solve for acceleration:  This is just like Example 5-4, only this time block  A  is on a 
slope.  Just use the same problem solving approach and recognize that gravity is 
different on slopes.  Fig 5.7a diagrams the problem.  Fig 5.7b shows the FBD’s for the 
two masses.  Make a note of the orientation of the vectors for block  A.  Fig 5.6c depicts 
the problem as a linear problem.  As usual gravity is pulling block  B,  and as it is felt 
entirely in the  y direction, it is acting with full strength.  However, gravity is acting at an 
angle to the motion of block  A  on the slope.  We need the component of gravity acting 
in the direction of motion,  Fgsinθ,  in order to solve the problem.   

sinAB g B gAF F F θ∑ = −  

( ) sinA B B Am m a m g m g θ+ = −  
( )

sinB A

A B

m g m ga
m m

θ−
=

+
 

Solve for the tension in the rope: Solve for either body.  On tests choose the easy one, 
this will usually be the hanging mass. 

sinA gAF T F θ∑ = −  or B gBF F T∑ = −  

sinA AT m a m g θ= +   B BT m g m a= −  

Plug the acceleration from part one into either equation above and you will get the same final answer. 

Friction: Opposes motion and is always negative.  Motion is always parallel to a surface, so friction always acts parallel. 
Static Friction: Friction that will prevent an object from moving.  As long as the object is standing still the force of friction 
must be equal to the push, pull, component of gravity or other force that attempts to move the object. (If there is no force 
attempting to cause motion, then there can be no friction).  Oddly enough the maximum value for static friction is measured 
just as the object breaks loose and begins to move.  Static friction is the strongest friction since the surfaces have a stronger 
adherence when stationary. 
Kinetic Friction: Friction for moving objects.  Once an object begins to move breaking static frictions hold, then the friction 
is termed kinetic.  Kinetic friction is not as strong as static friction, but it still opposes motion. 

Coefficient of friction: µ  is a value of the adherence or strength of friction.  µk  for kinetic and  µs  for static. 

f Nµ=  so cosf mgµ θ=  On flat surfaces θ = 0o, f mgµ=  

singF θ  

θ

θ

Fg 

cosgN F θ=  

singF θ  

Direction 
of motion 

sing gF F θ=

θ 

θ 

Fg 

cosg gF F θ⊥ =  

-FgAsinθ +Fg-T +T 

Fig 5.6c 

A B 
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+Fg
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Example 5-7: Two Dimension Compound Body with Friction 
Solve for acceleration: This is a repeat of Example 5-4, only this time friction appears in 
the FBD for mass  A.  Friction opposes motion and is therefore negative. 

AB g B frAF F F∑ = −  ( )A B B Am m a m g m gµ+ = −  
( )
B A

A B

m g m ga
m m

µ−
=

+
 

Solve for the tension in the rope: Solve for either body.  On tests choose the easy one, this 
will usually be the hanging mass. 

A frAF T F∑ = −  or B gBF F T∑ = −  

A AT m a m gµ= +   B BT m g m a= −  

Plug the acceleration from part one into either equation above and you will get the same 
final answer. 

Example 5-8: A Complex Slope Problem 
Objects can move up or down a slope.  singF θ  is simply the component of gravity pulling on an object down the slope in a 

direction parallel to the slope.  In Fig 5.8a a man is pushing mass  B  up a slope.  In this case gravity is opposite the direction 
of motion, as is friction.  The FBD’s for both blocks are shown in Fig 5.8b, with the main difference being the presence of the 
true forces,  Fg  and  FN instead of  singF θ .  Remember,  Fg  and  FN  are summed to create  singF θ .  The direction of 
motion (positive direction) is up the slope. 

A gAF F T∑ = −  sinB gB BF F T F fθ∑ = + − −  

gA AT F F= −∑  sinB gB BT F F F fθ= ∑ − + +  

 singA A B gB BF F F F F fθ−∑ = ∑ − + +  

sin cosA A B B Bm g m a m a F m g m gθ µ θ− = − + +  

sin cosA B A B Bm a m a m g F m g m gθ µ θ+ = + − −  

( ) sin cosA B A B Bm m a m g F m g m gθ µ θ+ = + − −  

If constant velocity 0 sin cosA B Bm g F m g m gθ µ θ= + − −  

If accelerating  
sin cosA B B

A B

m g F m g m ga
m m

θ µ θ+ − −
=

+
 

An easier way to solve any compound body problem connected by a string is to stretch it out in a linear manner as shown in 
Fig 5.8c. 
 
 
The direction of motion is to the left, so all left arrows are positive, and all right arrows are negative.  The string attaching the 
two boxes is the same and the two equal and opposite tensions cancel each other out.  This allows you to solve for an overall 
Force Net in fewer steps.  The main difference here is that the mass in the sum of force substitution is the total mass of the 
whole problem. 

singA gB BF F F F fθ∑ = + − −  

( ) sin cosA B A B Bm m a m g F m g m gθ µ θ+ = + − − , which is identical to the sixth line in the longer version above. 

Constant velocity 0 sin cosA P B Bm g F m g m gθ µ θ= + − −  or accelerating sin cosA B B

A B

m g F m g m ga
m m

θ µ θ+ − −
=

+
 

However, this is not going to solve for the force of tension in the string.  You must select one of the masses and work with its 
FBD.  Block  A  obviously has the simpler of the FBD, so choose it. 

A gAF F T∑ = −  gA AT F F= −∑  A AT m g m a= −  

If you are lucky the blocks are standing still or moving at constant velocity, in which case  a = 0.  If not use the  a  from 
above. 
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1−6  Work, Energy, and Power 

Work: Force applied to an object that moves a distance. 

cosF rW F r θ= ∆ = ∆i  θ   is the angle between direction of motion and applied force.  

Work is a Scalar (Dot) Product: The dot product (A⋅B) of two vectors  A  and  B  is a scalar and is equal to  ABcosθ.  
This quantity shows how two vectors interact depending on how close to parallel the two vectors are.  The magnitude of this 
scalar is largest when  θ = 0o (parallel)  and when  θ = 180o  (anti-parallel).  The scalar is zero when  θ = 90o (perpendicular). 

Work can be solved with either version of the formula. We will use both in example 6–1 below. The formula  F rW = ∆i   
involves vectors, which are annotated in bold print. Vectors have both magnitude and direction. The positive and negative 
values of force and displacement are important when using this version of the formula. The other version  cosW F r θ= ∆   
involves italicized print indicating that only the magnitude of each vector is needed. Only positive numbers are used. The 
angle in the formula is the angle measured between the two vectors. In this version of the formula  cosθ  solves the 
directional aspect. Compare both methods in the example below. 

Example 6-1: Various Orientations of Force and Displacement. 
In the first three scenarios a force  F = 5 N  acts on a mass which is displaced  r = 2 m. 
1. Force vector is parallel to the displacement vector and points in the same direction: 
 F rW = ∆i  cosW F r θ= ∆  
 ( )( )5 2W = +  ( )( )5 2 cos 0oW =  
 We decided  F  was positive Here the angle solves for the positive 
 ( )( )5 2 10JW = + =  ( )( )( )5 2 1 10JW = + =  
  
2. Force vector is parallel to the displacement vector and points in the opposite direction: 
 F rW = ∆i  cosW F r θ= ∆  
 ( )( )5 2W = −  ( )( )5 2 cos180oW =  
 We decided  F  is negative Here the angle solves for the negative 
 ( )( )5 2 10 JW = − = −  ( )( )( )5 2 1 10 JW = − = −  
 Forces opposing motion are negative, and are associated with negative acceleration and negative work. 
3. Force and displacement vectors are perpendicular: 
 F rW = ∆i  cosW F r θ= ∆  
 ( )( )0 2W =  ( )( )5 2 cos90oW =  
 We decided  F  has no affect on motion Here the angle solves for the zero 
 ( )( )0 2 0JW = =  ( )( )( )5 2 0 0JW = =  
 Forces acting perpendicular to motion have no affect in the direction of the original motion. They do not speed up or 
 slow the object in the direction being investigated. The object experiences inertia (stays at rest or continues at constant 
 velocity) in the direction it was originally moving. No work is done in the original direction of motion. The force may 
 accelerate the object in the perpendicular direction. However, this will no affect the direction of motion. 
4. Force and displacement vectors are at angles other than parallel or perpendicular: 
 In this scenario  F = 5 N  at 37o and  r = 2 m 
 F rW = ∆i  cosW F r θ= ∆  
 To use this formula you need a  
 component of  F  parallel to  r 
 xW F r=  ( )( ) o5 2 cos37W =  

 ( )( )o5cos37 2 8JW = =  ( )( )( )5 2 0.8 8JW = =  
 Both methods result in the same calculations. They are just derived with slight differences in problem solving logic. I 
 prefer using the formula on the left. I am in the habit of searching out my own components anyway. I know that any 
 components perpendicular do not matter, since  W = 0 in these cases. So I look for components of force that match the 
 displacement. You can also look for components of displacement that match force. I prefer finding the correct 
 component, since the formula on the right requires a specific angle that is not always the given angle in the problem. By 
 solving for components I take control of the problem and avoid plugging in wrong angles. 
 

r 
F θ = 0o
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F1 
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Work is the Area Under the Force Displacement Curve 
This is the integral of the force distance function in the calculus based course.  In the non-calculus 
course these areas will be simple enough (squares, rectangles, and triangles) to allow us to use geometry 
to find the area.  AP Physics C students need to be ready to deal with complex curves using the calculus 
expressions below. 

Calculus: W F dr= ∫   If the integral of force over an interval of displacement is work, then it should follow that the 

derivative of work with respect to the same interval of displacement is force.  
dWF
dr

=  

Energy: A capacity an object has to do work.  There are many forms of energy including, mechanical, chemical, electrical, 
thermal, nuclear, etc.  An object may have many types and amounts of energy at the start of a problem.  Calculating the total 
energy an object has is impossible, and it is also unnecessary.  During the course of a problem the type and amount of energy, 
or both, may change, and usually this change is restricted to only a few forms of energy.  Energy can also be passed from 
object to object.  Instead of trying to find the total energy we will focus on the forms of energy that change or that transfer 
from object to object.  Tracking the change or movement of energy is very manageable, flexible, and extremely useful. 
Mechanical Energy: The sum of Kinetic and Potential (gravitational) Energies 

Kinetic Energy: Energy of motion.  Depends on mass (inertia of the object) and velocity.  Velocity has a greater effect 

on kinetic energy as it is squared in the formula 21
2

K mv= .  Double a cars mass and you double kinetic energy.  

Double a cars velocity and you quadruple kinetic energy. 

Potential Energy (gravitational): Energy of position.  Depends on an objects mass, the gravity pulling the object, and 
on the height that the object is located at gU mgh= .  For mathematical simplicity and convenience the lowest 

possible point that the object can reach is designated to have zero height, and  h  is measured from this point.  This is 
arbitrary and any point can be chosen, but choosing the lowest point as zero avoids dealing with negative heights. 

Work Revisited: Think of work as the energy that is added (+W) to the system or subtracted (-W) from the system. 

System: The object that the problem is focusing on. 

Environment: The surrounding.  The entire universe, except the object in the problem. 

Work Energy Theorem: W Energy= ∆  Work put into a system equals the change in energy of the system. 

Example 6-2: Work and Potential Energy 
Lifting a Mass:  In order to lift a mass at constant velocity a force must be directed upward and be equal to the force of 
gravity.  Use  cosW F r θ= ∆ .  Substitute  Fg  for  F  and height  h  for  r.  cosgW F h θ= .  The force and displacement 

are in the same direction, so θ = 0o  and thus  gW F h= .  Substitution leads to  W mgh= .  Strangely this is the formula for 

gravitational potential energy?  gU mgh= .  So does  gW U= ? 

Not really.  Work-Energy Theorem states that work is a change in energy. 
W Energy= ∆  ( )W mgh= ∆  f iW mgh mgh= −  

But if we set the lowest height in the problem (we lifted the mass so  hi  is the lowest point) to be zero, then  fW mgh= .  
So, if we arbitrarily identify the lowest height as zero, then the work done to raise an object does equal the energy it has at its 
new position, relative to its starting point.  We are doing positive work, and this adds to the energy of the object. 

If we lift an object by doing 20 J of work, then the object will have 20 J of additional energy.  If we pretend that the object 
had 0 J at the start of the problem, then it now has 20 J at the end.  Caution: No object ever has zero energy.  This is just a 
mathematical trick or simplification.  We are not concerned with the amount of total energy the object has.  Instead we are 
focusing on the change in energy.  Many forms of energy are present (chemical, electrical, nuclear, etc.), but they did not 
change in this problem.  The only energy that changed was the energy of height or position, known as potential energy.  For 
convenience we set this energy to zero at the start of the problem (we simply moved the number line).  Besides avoiding 
negative heights it allows easier analysis of useable energy and energy flow.  The work done to lift the mass is added to the 
mass and becomes the final energy of the mass.  This is really just the added energy, and since the object cannot fall any 

F 

r 

W 
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further than the lowest height (zero potential energy), it can only loose this much potential energy.  We are really just 
tracking changes in usable energy.  This is why Work and Work-Energy Theorem is such a useful entity. 

20 J of work were added to the system, doing positive work and raising the systems energy.  Where did it come from?  It 
came from the environment.  We will soon learn that energy is conserved and just either moves (transfers) between locations 
(system and environment) or it changes form (potential to kinetic, etc.).  If you drop the object it will loose 20 J of potential 
energy.  Since it is loosing energy, 20 J of negative work is done by gravity.  Where does this energy go?  It turns into 20 J of 
kinetic energy.  Then the object hits the table and stops.  Now it has lost all of its height (potential energy) and all of its 
velocity (kinetic energy).  Where did the 20 J go?  There was a sound, so molecules of air were pushed aside.  The kinetic 
energy of the molecules increased.  The table vibrated.  The kinetic energy of the molecules in the table increased.  This 
vibration is felt as heat.  Where are the air molecules and table molecules?  They are in the environment.  So the 20 J returned 
to the environment.  What do you mean by returned to the environment?  Well, when I picked up the mass in the first place I 
was part of the environment, so the original 20 J used to lift the mass came from the environment in the very beginning. 
Conservation of Energy: Energy cannot be created or destroyed, but it can change forms. 

There are many forms of energy.  Those that will be used in this course are shown in the energy wheel below (Note: AP 
Physics C students will not cover Thermal or Modern).  All the forms of energy are included here as this serves as a review 
of the entire year.  If any energy is unfamiliar to you at this point in the year don’t worry, we will cover them soon enough. 

If energy can change form, then any energy can be equal to any other energy.  If you drop an object the object looses height, 
but gains velocity.  In this case potential energy is turning into kinetic energy.  If the object looses all of its height, then there 

is a 100% transfer of energy to kinetic energy.  21
2i fmgh mv= .  But, what if the energy is an incomplete transfer.  What if 

the problem ends before reaching zero height (zero potential energy).  The object will then have two energies at the end.  

21
2i f fmgh mgh mv= + .  Energy is a scalar.  It is directionless and simply adds without worrying about direction.  

Basically, conservation of energy means that the total energy at the beginning of the problem must equal the total energy 
at the end of the problem.  What if the object has height and is moving at the beginning of the problem, and still has height 

and is moving at the end of the problem?  2 21 1
2 2i i f fmgh mv mgh mv+ = + .  The total energy in the problem is either 

21
2total i iE mgh mv= +  or 21

2total f fE mgh mv= + .  The total energy is conserved, so the total energy is present at the 

beginning, and it is still present at the end.  What happens if the object is thrown straight upward, from the lowest point, and 

then reaches the highest point of flight where the velocity is zero?  21
2 i fmv mgh= .  What if it is thrown upward at an 

angle so that when it reaches its highest point it still has some velocity in the  x- direction?  21
2i f fmgh mgh mv= + .  We 

can see that conservation of energy is a very flexible and powerful tool. 

Remember: Energy is directionless.  Simply ask yourself: 
1. What energy/energies are present initially and add them up on the left. 
2. What energy/energies are present finally and add them up on the right. 

Can energy be lost?  No!  Lost energy goes to the environment.  A car (system) looses energy due to air resistance, so 
air molecules (environment) gain energy and move faster.  Energy is conserved in the universe. 
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 The wheel to the left shows all the energies learned in this 
class around the outside.  They are grouped into the five 
major strands of physics.  In the center is work. 
Conservation of Energy: Energy cannot be created 
or destroyed it can change forms. 
Changing forms means that any energy/energies initial 
around the outside of the circle can change into any other 
energy/energies final.  i fEnergy Energy∑ = ∑  

In this class we often assume 100% energy transfer.  One 
energy may be present initially, which disappears, and 
another energy is present at the end of the problem.  In 
these 100% energy transfer problems any energy around 
the wheel can equal any other energy.  If more than two 
energies are mentioned then you simply add up all 
energies present initially and set them equal to the total of 
all the final energies. 
Work Energy Theorem: Work is a change in any 

energy.  f iW Any Energy Any Energy= −  

Most of the time one of the energies, either final or initial 
is equal to zero.  So then Work can equal any energy 
around the outside.  And since W = Fr, then Fr can equal 
any energy around the outside. 

When do we use Conservation of Energy as Opposed to Work Energy Theorem?  Conservation of 
energy is used when energy stays in the system and simply changes form.  Work Energy Theorem is used when energy 
moves from the environment to the system and vice versa.  You will see me use a hybrid of the two, in the examples below, 
when energy is lost to the environment due to friction. 

The following is an incomplete list of examples.  Many of these are common problems, and have been represented in AP 
Exams.  In addition many are based on 100% efficiency of energy transfer.  This is not really the case (see thermodynamics, 
soon), but it makes the problems easier in the same way that an airless and frictionless world helped us to start kinematics. 

Example 6-3: Height Turning Into Velocity 
The path does not matter, only the change in height. 

For a 100% transfer: 21
2i fmgh mv=  

 

Example 6-4: Roller Coaster 
A roller coaster is a good example of incomplete transfer 
of energy.  At different points along the track there are 
various amounts of both kinetic and potential energy.  
One key to all these height problems, measured from a 
planetary surface, is to declare the lowest point in a 
problem to be  h = 0.  This gives a reference that is easy 
to add or subtract from.  Then if you are given the height 
at any point on the track you can find the carts velocity: 

2 21 1
2 2i i f fmgh mv mgh mv+ = +  

Newtonian Mechanics 

Electricity & Magnetism 

21
2

K mv= gU mgh=  

21
2sU kx=
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2cU CV=1

2cU QV=

hcE
λ

=

cosW F r θ= ∆  Modern 
Physics 

Thermal 
Physics

h 

Fig 6.3 

vi 

hi hf 

vf 

h = 0 

Fig 6.4 



Revised 8/29/06 23 © R H Jansen 

Example 6-5: Friction Stops an Object 
Fig 6.3a shows an object that had height and stopped due to friction.  Friction 
is a force and the only way to use a force in an energy equation is to multiply 
the force by the displacement, in other words use work.  In this case it is the 
work of friction. 

i frmgh W=  i frmgh F r=  

If the object in Fig 6.3a did not stop, but was just slowed by friction then it 
would still have some kinetic energy. 

21
2i fr fmgh W mv= +  21

2i fr fmgh F r mv= +  

In figure 6.3b the object is sliding along a horizontal surface.  It initially has 
kinetic energy and is stopped by friction. 

21
2 i frmv W=  21

2 i frmv F r=  

If the object in Fig 6.3b did not stop, but was just slowed by friction then it would still have some kinetic energy. 

2 21 1
2 2i fr fmv W mv= +  2 21 1

2 2i fr fmv F r mv= +  
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Power: Power is the rate of work, or rate of energy change.  In other words it is the rate that energy is used, transferred, or 
generated during a one second interval.  Since it involves energy, power is by extension as important. 

WP
t

=  you can substitute for work F rP
t
∆

= ,  and if you note that displacement over time is velocity then, 

P Fv= .  The first boxed equation is useful when you have work or energy, the second is useful when you have force.  
Even though the first equation contains the expression for work, you must be flexible.  You must realize that work is a 

change in any energy  Any EnergyP
t

∆
= .  You can plug in any energy from the preceding page. 

mghP
t

=   ,  
21 2mvP

t
=   , etc.  If a problem contains any form of energy or work or the units of 

joules, and any quantity of time or any units of time, then it will involve power. 

If energy is flexible then so is power.  Occasionally a question gives power as a variable, but you need energy to 

solve the problem.  Simply set the time equal to one second, then
1
WP
s

=  and work/energy will have the same numerical 

value (but different units) as power for that one second.  Use this value for Work/Energy to solve the problem.  Just 
remember that all answers obtained in the problem are based on one second.  If time is given later on, just multiple the energy 
of “one second” by the number of seconds and you’ve got your answer. 

Powerful machines do more work in the same time, or the same work in less time.   

Calculus: dWP
dt

=   Power is another rate (function of time) and is therefore a derivative expression.  Integrating power 

during a time interval will return work or energy values.  W P dt= ∫  

Solve problems by looking for energy, work, and power first, then force, last of all kinematics. 
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1−7  Oscillations 

Period: 1T
f

=  Time for one revolution. 

Frequency: The number of revolution, vibrations, oscillations, or rotations per second. 

Springs:  A Simple Harmonic Oscillator (SHO) 
Restoring force: A spring attached to a block is shown at the 
right.  Equilibrium (x = 0) is the rest position when no external 
forces are applied.  If the spring is compressed so the block 
moves to –x or the spring is stretched so the block moves to +x 
the spring will have a force directed toward the equilibrium 
position.  This is the restoring force F kx= − , and is known 
as Hooke’s Law.  k is the spring constant reflecting the quality 
or strength of the spring.  The minus sign shows that the 
restoring force is opposite the displacement.  Move a spring 
right and it wants to restore to the left.  Restoring force is highest 
at maximum displacement (amplitude), located at +x and –x.  At these positions the spring has the highest force and 
acceleration, but has an instantaneous velocity of zero.  It also has the highest amount of spring potential energy. 

Potential Energy: The energy of position.  This time we are working with a spring’s position, 21
2sU kx= .  When a 

spring is at equilibrium it is at rest and has zero displacement.  This position is thus has zero potential energy.  This is just 
like gravitational potential energy.  When an object is a rest on the ground it is said to have zero potential energy.  When it is 
displaced against the force of gravity it gains potential energy.  It wants to return to the ground.  The mass is displaced 
against the force of the spring, which wants to return it to equilibrium.  So a displaced spring has stored energy, also known 
as potential energy.  When the spring is fully displaced at either  -x  or  +x  it comes to rest. 

Amplitude: The distance from equilibrium to the point of maximum displacement.  This is the distance form  x = 0  to  -x,  or 
from  x = 0  to  +x.  It is not the distance from  -x  to  +x.  That distance is two amplitudes.  How many amplitudes does a 
spring go through in one complete cycle, from  -x  to  x = 0  to  +x,  and then back to  x = 0 and finally back to  -x?  Four. 

When the spring reaches  -x  or  +x  there it comes to an instantaneous stop, so it has no kinetic energy, but it has potential 
energy and a very large restoring force.  When it moves through the equilibrium position the force on the spring and 
acceleration are both zero, but the velocity and kinetic energy is now at a maximum.  Here any potential energy stored by 
displacing the spring from rest is turned into kinetic energy.  Conservation of energy dictates that if one form of energy 

disappears and another appears, then the two energies must be equal.  So US = K,  or  2 21 1
2 2

at either end at the middlekx mv=  

Springs are a variable force.  sF kx= −   The more a spring is displaced,  x,  the 
larger the force,  F,  that is needed to displace it.  At first no force is needed to move the 
spring.  At the end of the problem a force  FS  is needed.  So the average force needed 

during the entire displacement is  
0 1 1

2 2 2
s

s s
FF F kx−

= = = .  Work is  

21 1
2 2

W F d kx x kx= ⋅ = ⋅ = .  Force and displacement can be graphed as shown at the 

right.  The equation  sF kx=   is the equation for a line  y mx b= + ,  where  k  is the slope. 

US  is the area under the curve,  ( )( ) ( )( ) 21 1 1 1
2 2 2 2s sbh x F x kx kx U= = = =  

Period of a spring: Time required for one oscillation, 2s
mT
k

π= .  Depends on mass of object attached to spring and k. 
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Pendulums: Approximates a Simple Harmonic Oscillator (SHO) 
Restoring force: The restoring force is the sum of the tension and gravity vectors 
diagramed to the right.  When the object is at its extreme displacement (+x or –x) 
the restoring force is greatest.  When the object returns to the equilibrium position 
(x = 0) the sum of the vectors is zero, and there is no restoring force.  This is just 
like the spring above.  There is never any net force at the equilibrium position (x = 
0), so there is no acceleration at this point.  Both the pendulum and the spring 
move through the equilibrium by inertia.  It is interesting to note that when the 
restoring force is highest (at maximum displacement, either +x or -x), the velocity 
is zero.  When the net force is zero (equilibrium position, x = 0), the velocity is at 
its highest.  All of the proceeding is true for any harmonic oscillators.  Note:  the 
dashed displacement line is not the same length as the arc that a pendulum actually 
moves through.  The difference is very small at angles less than or equal to 15o.  
Beyond this angle pendulums are not good harmonic oscillators.  So at angles 
under 15o pendulums behave almost like a true SHO. 
Energy: The pendulum has potential energy at +x and –x.  It has kinetic energy at 
x = 0.  The potential energy at one either end equals the kinetic energy in the 
middle.  Potential energy in a pendulum has to do with height, not the spring 

constant  21
2

at the middleat either endmgh mv=  

Period: Time required for one oscillation, 2pT
g

π= .  Depends on length of the pendulum and g. 

ΣF = 0 
a = 0 
U = 0 
K is max 
v is max 

ΣF is max
a is max 
U is max 
K = 0 
v = 0 

ΣF is max
a is max 
U is max 
K = 0 
v = 0 

+x -x 

x = 0 

θ 

F F 
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1−8  Linear Momentum and Collisions 

Momentum: m=p v  Quantity of motion (inertia in motion).  Measure of how difficult it is to stop an object. 

Impulse: t= ∆ = ∆J F p   Trade off between time taken to stop and force needed to stop.  Velocity, acceleration, and 

momentum were understood early on in the developing days of physics.  These concepts were used by Newton to establish 

his 2nd Law: t∆ = ∆F p  t m∆ = ∆F v  m
t

∆
=

∆
vF  m=F a  

Calculus: Force is the derivative of momentum 
d
dt

=
pF .  Analogous to acceleration being the derivative of velocity 

d
dt

=
va .  If you divide the force and momentum vectors by the scalar mass you get the acceleration and velocity vectors.  

Physics is full of meaningful patterns.  Impulse is the integral of force during a time interval dt= = ∆∫J F p .  This 

means that if you take the derivative of impulse with respect to time you will calculate force 
d
dt
JF= . 

 
Collisions and Conservation of Momentum: Momentum in any situation must always be conserved.  When two 
objects, each having momentum, collide the total momentum during the problem remains the same.  If mass  1  and mass  2  
are moving then they both a momentum.  Their momentums add together to calculate a total momentum 

1 1 2 2total i ip m v m v= + .  If they collide they might bounce off each other with different velocities than before, but the total 

momentum must remain the same 1 1 2 2total f fp m v m v= + .  If the initial momentums and final momentums are both equal 

to the same total momentum then the sum of the initial momentums must equal the sum of the final momentums 

1 1 2 2 1 1 2 2i i f fm v m v m v m v+ = + .  If there are more than two masses involved, just keep adding them to both sides. 

Momentum is a Vector: Unlike energy (a scalar) which simply adds, momentum is a vector.  Vectors have direction, and 
this means that the vector directions (like force vectors) must be accounted for in the math.  You must decide on a positive 
direction in a conservation of momentum problem.  Once decided any mass traveling in that direction has a positive 
momentum.  Any mass traveling opposite the chosen direction has a negative momentum.  Any mass traveling at an angle to 
the chosen direction must be split into components, with the  x and y directions analyzed separately.  Use the same strategies 
that were learned in forces. 

Elastic Collision: Collisions in which kinetic energy is conserved.  This can only happen when two objects do not touch each 
other.  One example that may make sense and will be used latter in electricity is the collision between two protons.  Protons 
have positive charges and in electricity like charges repel.  If two protons approach each other head on the repulsion for each 
other will slow them to a stop before they touch one another.  Then the repulsion will repel them away from each other.  In 
effect they bounce off each other without touching 

Inelastic Collisions: Collisions in which kinetic energy is lost.  Since energy is never really lost, it must go somewhere.  Lost 
energy is just energy that was lost by the system to the environment or it is energy that changed into a form that is not very 
recognizable.  When masses collide and touch each other the masses vibrate.  This vibration is heat.  In collisions where 
objects touch each other some of the original kinetic energy is lost as heat. 

Perfectly Inelastic Collision: The objects collide and stick together (one mass, one velocity) ( )1 1 2 2 1 2fi im v m v v m m+ = + . 

Explosion: The opposite of a perfectly inelastic collision.  A single object fractures and sends fragments in many directions.  
If we look at the simpliest case where it fractures into two bodies moving in opposite directions then 
( )1 2 1 1 2 2i f fv m m m v m v+ = + .  Usually the original object is considered stationary in beginners examples, but it does not 

have to be  1 1 2 20 f fm v m v= + .  So this means that  1 1 2 2f fm v m v= − .  The negative sign implies that one object must 

move in the opposite direction of the other. 
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Example 8-1: Conservation of Linear Momentum 

Elastic Collision: Mass 1,  m1 = 2.00 kg,  is moving at 4.00 m/s to the right.  Mass 2,   
m2 = 2.00 kg,  is stationary and is hit by mass 1.  After the collision mass 2 moves to the 
right at 4.00 m/s.  The collision is diagrammed before and after in Fig 8.1a.  What is the 
velocity of mass 1 after the collision? 

1 1 2 2 1 1 2 2i i f fm v m v m v m v+ = +  

( )( ) ( )( ) ( ) ( )( )12 4 2 0 2 2 4fv+ = +  1 0 /fv m s=  

All the momentum from mass 1 was transferred to mass 2. 

Inelastic Collision: Mass 1,  m1 = 4.00 kg,  is moving at 4.00 m/s to the right.  Mass 2,  
m2 = 2.00 kg,  is stationary and is hit by mass 1.  After the collision  mass 2 moves to the 
right at 5.30 m/s.  The collision is diagrammed before and after in Fig 8.1b.  What is the 
velocity of mass 1 after the collision? 

1 1 2 2 1 1 2 2i i f fm v m v m v m v+ = +  

( )( ) ( )( ) ( ) ( )( )14 4.00 2 0 4 1 5.30fv+ = +  1 1.35 /fv m s=  

Perfectly Inelastic Collision: Mass 1,  m1 = 4.00 kg,  is moving at 4.00 m/s to the right.  
Mass 2,  m2 = 2.00 kg,  is stationary and is hit by mass 1.  After the collision the mass 
stick together.  The collision is diagrammed before and after in Fig 8.1c.  What is the 
velocity of the combined mass after the collision? 

( )1 1 2 2 1 2 fi im v m v m m v+ = +  

( )( ) ( )( ) ( )4 4.00 2 0 4 2 fv+ = +  1 2.67 /fv m s=  

Explosion: A large mass fractures into two smaller masses,  m1 = 4.00 kg  and   
m2 = 2.00 kg.  Mass 2 moves to the right at 2.0 m/s.  How fast is mass 1 going after the 
explosion? 

( )1 2 1 1 2 2i f fm m v m v m v+ = +  

( )( ) ( ) ( )( )14 2 0 4 2 2fv+ = +  1 1 /fv m s= −  

The minus sign in the last example means that the mass is going to the left.  Remember to watch the minus signs.  Harder 
problems will have masses moving in different directions.  Missing the sign convention will destroy the problem. 

Collisions and Energy: Total energy is always conserved,  E E E Ei i f f1 2 1 2+ = + . 

However, kinetic energy is only one form of energy.  If we look only at kinetic energy it sometime seems to disappear. 
Kinetic energy is conserved only in elastic collisions. 1 2 1 2i i f fK K K K+ = +  

Kinetic energy is lost (dissipated) in inelastic collisions. ( ) ( )1 2 1 2losti i f fK K K K K+ − = +  

But where does the lost kinetic energy go?  When two or more bodies collide the molecules that they are composed of are set 
into faster vibration.  The speed of molecules is directly proportional to temperature, and temperature is one component of 
internal energy.  So while kinetic energy is lost, total energy is not.  The kinetic energy lost is turning into another form of 
energy, which is not one of the mechanical energies (kinetic and potential).  It is now in the form of vibrating atoms and 
molecules: internal energy (a thermal energy). 

1 2 4 m/s 

Fig 8.1a 

1 2 4.0 m/s 
? 

1 2 4 m/s 

Fig 8.1b 

1 2 5.3 m/s 
? 

Fig 8.1c 

1 2 4 m/s 

1 2 
? 

1 2 

Fig 8.1d 

1 2 
2.0 m/s ? 
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Example 8-2: Two dimensional Collision 
Mass 1,  m1 = 2kg,  is moving at 4m/s to the right.  Mass 2,  m2 = 1kg,  is stationary and is 
hit by mass 1 just a little off center.  This causes mass 2 to move a 3m/s at an angle of 20o 
below the  x-axis.  The collision is diagrammed in Fig 8.2a (initial conditions) and in  
Fig. 8.2b (final conditions).  What is the speed and direction of mass 1 after the collision? 
The total momentum before the collision must equal the total momentum after.  But after 
the collision the masses are moving at angles to the initial motion of  m1.  We have to work 
in components.  The total momentum in the  x-direction must be conserved and the total 
momentum in the  y-direction must be conserved. 

x-direction: Two bodies before and two after. 

1 1 2 2 1 1 2 2ix ix fx fxm v m v m v m v+ = +  

( )( ) ( )( ) ( ) ( ) ( )( )12 4 1 0 2 1 3cos 20o
fxv+ = + −  1 2.59 /fxv m s=  

y-direction: This dimension is an explosion.  Initially there is no motion in the  y-direction at all.  Then there are two bodies 
moving in opposite directions. 

( )1 2 1 1 2 2iy fy fym m v m v m v+ = +  

( ) ( ) ( )( )10 2 1 3sin 20o
fxv= + −  1 0.513 /fyv m s=  

When you have two component vectors Pythagorean Theorem them back together and use arctangent to find the angle. 

( ) ( )2 22 2
1 1 2.59 0.513 2.64 /f fx fyv v v m s= + = + =  

( )
( )

11 1 0

1

0.513
tan tan 11.2

2.59
fy

fx

v
v

θ − −= = =  

What amount of kinetic energy is lost?  Remember energy is a directionless scalar, so  x  and  y  are meaningless. 

( ) ( )1 2 1 2losti i f fK K K K K+ − = +  

2 2 2 2
1 2 1 2

1 1 1 1
2 2 2 2losti i f fmv mv K mv mv⎛ ⎞ ⎛ ⎞+ − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 21 1 1 12 4 1 0 2 2.64 1 3
2 2 2 2lostK⎛ ⎞ ⎛ ⎞+ − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 0.0304lostK J=  

Example 8-3: Ballistic Pendulum 
The ballistic pendulum is used to determine projectile speed.  The sequence of events is as follows.  First a projectile, like a 
bullet (b), is fired into a block (B).  This collision is perfectly inelastic, so 

( )b b B B b B fiim v m v m m v+ = +  is used to solve for the vf  of the bullet block 

combination.  vf  for this first phase becomes the  v0  for the second phase.  In the second 
phase the bullet block combination swings as a pendulum to a new height, as shown in 

the diagram to the right.  Conservation of energy applies.  2
0

1
2

mv mgh=  is used to 

determine the height of the swing. 

But, the point is to find the velocity of the bullet, so this problem is actually done 
backwards.  The length of the rope holding the pendulum is known (l) and the distance 
the pendulum moves in the  x  direction (x) is measured (or the angle of swing,  θ,  is 
measured).  You must use the geometry of a pendulum swing diagramed in Fig 8.2 to 

find the height (h) that the pendulum rises to 2 2y l x= −  and l y h= + , so 

h l y= − .  Plug this final  h  into 2
0

1
2

mv mgh=  and solve for the initial  v0  of the 

energy phase.  Then recognize that this is the same as  vf  for the collision ( )b b B B b B fiim v m v m m v+ = +   Solve for  vb. 
 

 
 
 
 

h 

l 
y 

l 

x 

θ 

Fig 8.3 
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? 

? Fig 8.2a 

Fig 8.2b 
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1−9  Uniform Circular Motion and Gravity 

Frequency: How often a repeating event happens.  Measured in revolutions per second. 

Period: The time for one revolution.  1T
f

=  Time is in the numerator. 

Velocity: Direction and thus velocity are continuously changing in circular motion.  The 
magnitude of velocity and speed are not.  You can measure an instantaneous velocity, which is 

tangential to the curve.  Tangential Velocity or speed 2 rv
T
π

=  

Centripetal Acceleration: Inertia would make a mass leave the circle following the tangential 
velocity.  Instead the direction of the mass is being changed toward the center.  In other words 

the mass is accelerated toward the center.  Centripetal means center seeking.
2

c
va
r

=  

Centripetal Force:  If an object is changing direction (accelerating) it must be doing so because 
a force is acting.  Remember objects follow inertia (in this case the tangential velocity) unless 
acted upon by an external force.  If the object is changing direction to the center of the circle it 

must be forced that way.  c cF ma=  
2

c
vF m
r

=  

Problem Solving Strategy 
1. As always, ask what the object is doing.  If it is moving in a circle, or even part of a circle, shown above right. 
2. Draw a FBD.  Remember Fc is the sum of force for circular motion.  The sum of force is not shown in the FBD. 
3. Set the direction of motion as positive.  Toward the center is positive, since this is the desired outcome. 
4. Identify the sum of force equation.  In circular motion cF  is the sum of force.  cF  can be any of the previous forces. 
5. Substitute the relevant force equations and solve. 

Example 9-1: Vertical Circular Motion 
A ball at the end of a string is swung in a vertical circle.  Any forces pointing to the center are positive, 
while force vectors pointing away from the center are negative.  Sum the forces.  In circular motion  Fc  
is the sum of force.  Find the tension in the string when the ball is at the top and at the bottom. 

c g TF F T= +  c g BF F T= − +  

T c gT F F= −  B c gT F F= +  

2

T
vT m mg
r

= −  
2

B
vT m mg
r

= +  

Example 9-2: Horizontal Circular Motion 
A penny on a circular disk rotating horizontally (or a car turning a corner).  Something must 
be keeping it going in a circle.  Friction keeps it in place.  If friction let go the penny would 
move due to inertia in a direction tangent to the disk.  Force centripetal is the sum of forces 
for circular motion.  Find a formula for the maximum velocity if the coefficient of 
friction is known. 

c frF F=  
2vm mg

r
µ=  v grµ=  

Example 9-3: Top of a Loop and Apparent Weightlessness 
Apparently weightless means that you are in freefall.  The only force acting on you is  Fg.  To 
feel weightless at the top of the loop the roller coaster car can have no  FN (no pressure from 
the track).  So for an instant at the top the car is not touching the track.  What at the top of 
the loop makes this possible? 

c gF F=  
2vm mg

r
=   

v 

Fc & ac 

v 

Fc & ac 

Fg 

TB

Fg 
TT

Fig 9.1 

Ffr 

Fig 9.2 

Fg 

Fig 9.3 
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Example 9-4: Conical Pendulum 
m1  is suspended by a string that passes through a tube.  At the other end of the tube  m2  is 
hanging from the same string.  m1  is spun at a velocity that keeps  m2  stationary. 

Solve for the force centripetal.  Force centripetal is the sum of force that points to the 
center of the circular motion.  The two acting forces on  m1  are causing the circular 
motion, and they must sum together as force centripetal.  If you add the two acting force 
vectors tip to tail they form a force vector triangle, shown in Fig 9.4b. 

2 22
1c gT F F= +  22

1c gF T F= −  

Solve for the tension in the rope.  Both masses hang from the rope, so either one can be 
used.  Pick the easiest, in this case the vertically hanging mass.  It’s FBD is shown in Fig 
9.4c.  2gF T F∑ = −  20 gT F= −  2gT F=  

22
1c gF T F= −  

2
2 2

2 1g g
vm F F
r
= −  

2 2
2 1g gr F F

v
m
−

=  

Example 9-5: Gravitron 
This is the ride at amusement parks where it spins and the floor drops down, leaving the occupants stuck 
to the wall. 
Solve for the tangential velocity.  You feel pressed against the wall because the wall exerts a normal 
force toward the center.  In other words the normal force is force centripetal, c NF F= .  In the vertical 
dimension you are prevented from sliding down the wall by an upward and equal friction force, 

fr gF F= .  Friction depends on force normal. fr NF Fµ= .  Put all these equations together, and 
substituting for  Fc  and  Fg. 

c NF F=  fr
c

F
F

µ
=  g

c

F
F

µ
=  

2
gFvm

r µ
=  

2v mgm
r µ
=  

rgv
µ

=  

Gravity: One of the fundamental forces.  This force is a field force, and the field is  g,  the acceleration of gravity.  Every 
mass in the universe generates a gravity field.  The gravity field is directed toward the center of mass.  While the nature of the 

force is not understood the mathematics are detailed in Newton’s Law of Universal Gravitation 1 2
2g

m mF G
r

=  where 

11 2 26.67 10G N m kg−= × ⋅ .  This equation is the force between two masses.  Remember the force between objects is equal and 

opposite.  Combine this with the equation for weight gF mg=  to get mg G m m
r

= 1 2
2

, which simplifies as 
2

mg G
r

= .  

Each equation has its usefulness depending on the situation.  The last equation is important for finding the gravity field value  
g  around any mass at a distance  r.  To find the gravity at a point in space near Earth, use the mass of 
earth (which creates the gravity) and the distance from Earth’s center.  r is not a radius, but is the 
distance measured from center of a mass.  r  is used since gravity radiates in rays from the center of 
mass in a spoke like manner.  Viewed in this way every distance in gravity is a radius.  If you calculate  
g  at a point in space near a mass you also know  g  for all points on a sphere of that radius 
(equipotential, since all points have the same potential energy). 

Inverse Square Law: This can be used for both formulas with  r2  in the denominator.  If  r  
doubles (x2), invert to get ½ and then square it to get ¼.  Gravity is ¼ its original value so  Fg  is ¼ of what it was and  g  is ¼ 
of what it was.  Multiply the old  Fg  by ¼ to get the new weight, or multiply  g  by ¼ to get the new acceleration of gravity. 

r 

m2 

m1 

Fg1 

T = Fg2 

Fig 9.4a 

Fc 

Fg1 
T = Fg2 

Fig 9.4b 

T 

Fg 

m2 Fig 9.4c 

FN 

Fg 

Ffr 

Fig 9.5 
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Example 9-6: Gravity on an Unknown Planet 
Mars has roughly half the radius of Earth and has one-tenth the mass. 
What is the gravity on the surface of Mars?  Many students want to look up the radius and mass of Mars and plug into this 

equation 
2

mg G
r

= .  But there is another way.  The problem gives us the relationship to Earth for a reason.  We also 

already know the gravity on Earth 
29.8 Earth

Earth

mG
r

= .  What if we just use some logic and the Inverse Square Law?  The gravity 

on Mars is going to be Earth’s gravity adjusted by pretending Earth shrinks to half its radius and one-tenth its mass. 
( )
( )2

0.1

0.5
Earth

Mars
Earth

m
g G

r

×
=

×
 ( )

( )2 2

0.1

0.5
Earth

Mars
Earth

mg G
r

= ×   and we already know that  29.8 Earth

Earth

mG
r

= , so 

( )
( )2

0.1
9.8

0.5
Marsg = ×  23.92Marsg m s= .  Again, just pretend Earth shrinks to become Mars.  This last line is 

all the work you need to show. 

Example 9-7: Superposition of Gravity Fields 
Superposition is a term referring to the addition, or superimposing, of two or more force fields.  In Fig 9.7a mass  A  and 
mass  B  both create gravity at all points in space to infinity.  If an object is positioned at point  P  it will feel the gravity of 
both masses.  The two gravities must be added together using vector addition.  mA = 2.00×1020 kg,  mB = 4×1020 kg,  The 
masses are 2.00×108 m apart.  Point  P  is located at a point half way between the masses. 
What gravity is felt at point  P?  First solve for the gravity of each 

planet, at point  P,  separately.  Use  
2

mg G
r

=  

( ) ( )
( )

20
11 6 2

28

2.00 10
6.67 10 1.33 10

1.00 10
g m s− −

×
= × = ×

×
 toward  m1 (left) 

( ) ( )
( )

20
11 6 2

28

4.00 10
6.67 10 2.67 10

1.00 10
g m s− −

×
= × = ×

×
 toward  m2 (right) 

g  is a vector, and vectors have direction.  Assign a positive sign to the vector pointing right and a negative sign to the vector 

pointing left, as shown in Fig 9.7b.  Then add the two vectors together ( ) ( )6 6 61.33 10 2.67 10 1.33 10− − −− × + + × = + × .  

The positive answer implies that the gravity at point  P  is  1.33×10-6 m/s2 directed toward the right. 

If a 100 kg mass were to be positioned at point P, what would the force of gravity be?  The beauty of finding  g  is that 

you can easily apply it to any mass at that location to find the force of gravity  ( ) ( )6 4100 1.33 10 1.33 10gF N− −= × = ×  

Potential Energy Revisited: There is another equation to find potential energy using the universal gravity constant.  
Use the work formula and work energy theorem, g g gW U F r= ∆ = ∆ .  Set the initial displacement as zero and it simplifies 

to g gU F r= .  Use this with 1 2
2g

m mF G
r

= −  to get 1 2
2

gU m mG
r r

= − .  This simplifies to 1 2
g

m mU G
r

= − . 

Where did the minus sign come from?  Suddenly it is added to Newton’s Law of Universal Gravitation.  This is the formal 
version of the law.  It can be used with either a positive sign (simplified and common version) or a negative sign (formal 
version) and is situational dependent.  In formal physics a point at infinity is said to have zero potential energy.  Since a 
central point of zero potential energy cannot be located in the universe, it makes sense to pick infinity to be zero potential 
energy.  All points in the universe are the same infinite distance from infinity.  However, this means that close to Earth’s 
surface potential energy is negative.  It is common practice when viewing planets from a great distance to set infinity as   
Ug = 0,  and when on a planets surface to set the lowest height as  Ug = 0.  These are just conventions used to make specific 
problems easier to solve.  Remember, the exact energy that an object has is not really important.  What matters is how much 
of that energy is usable to do work.  And work is a change in energy.  Therefore, we can really declare any point as zero 
energy and measure changes from that point. 

P 
1 2

Fig 9.7a 

P 
1 2

Fig 9.7b 

-1.33×10-6 +2.67×10-6
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1−10  Introduction to Rotation and Torque 

Rotation: In rotation the entire object spins around its center of mass.  Looking at the tangential velocities diagramed at the 
right, we see that they are all in different directions and all vary in magnitude.  Points near the 
outer edge have to move through a larger circumference in the same period than those closer to 
the center.  The outer edge must be moving faster to cover the longer distance in the same 
period or time.  All of these points have one thing in common, they all travel through the same 
number of degree or radians during a period.  Rotational velocity measured in radian per second 
is called angular velocity.  However, All the equations for an object in circular motion hold 
true if we are looking at a single point and only a specific point on a rotating object.  
Rotating objects have rotational inertia and an accompanying angular momentum, meaning that a rotating object will 
continue to rotate (or not rotate) unless acted upon by an unbalanced torque, discussed below. 
(Note: Planets and satellites follow circular motion, as they are not attached.  Inner planets move faster as they are closer to 
the sun and must have larger tangential velocities.  They also travel a shorter circumference.  Thus they have shorter periods.) 

Angular momentum: Depends on mass (like regular momentum) and it also depends on mass distribution.  As an ice 
skater brings their arms closer to the body they begin to spin faster, since the mass has a shorter distance to travel. 

Angular momentum is conserved.  The radius gets smaller, but angular velocity increases (vice versa as the skater 
moves arms outward).  A galaxy, solar system, star, or planet forms from a larger cloud of dust.  As the cloud is pulled 
together by gravity its radius shrinks.  So the angular velocity must increase.  These objects all begin to spin faster.  That is 
why we have day and night. 

Torque: In rotation problems we look at the sum of torque (not the sum of force).  But it is exactly the same methodology. 

sinrFτ θ=  Strongest when the force is perpendicular to the lever arm (since sin 90o equals one). 

Balanced Torque: The sum of torque is zero.  No rotation. 

Unbalance Torque: Adding all the clockwise and counterclockwise torque does not sum to zero.  So there is excess torque 
in either the clockwise or counterclockwise direction.  This will cause the object to rotate. 
1. As always, ask what the object is doing.  Is it rotating or is it standing still? 
2. Set the direction of motion as positive.  The convention when in doubt is that counterclockwise is positive.  This 

corresponds to projectile motion where angles measured from the horizon counterclockwise were positive.  But, just like 
in forces if you know the direction of motion call it positive.  It will either rotate clockwise or counterclockwise.  If you 
pick the wrong direction your final answer will be negative.  But, the answer will be correct nonetheless.  If it is not 
moving pick one direction to be positive, it really doesn’t matter.  But the other must be negative, so the opposing 
torques cancel. 

3. Identify the sum of torque equation.   

cw ccwτ τ τ∑ =∑ −∑  or ccw cwτ τ τ∑ = ∑ −∑  
4. Substitute the relevant force equations and solve (examples assume clockwise was positive direction) 
Rotating: ( ) ( )sin sin

cw ccw
rF rFτ θ θ∑ =∑ −∑  

Not Rotating:  ( ) ( )0 sin sin
cw ccw

rF rFθ θ= ∑ −∑  ( ) ( )sin sin
cw ccw

rF rFθ θ∑ = ∑  

Example 10-1: Torque and a Seesaw 
Three masses are positioned on a seesaw as shown in Fig 10.1.  mA = 4.0 
kg,  mB = 2.0 kg,  and  m3 = 3.0 kg.  Distances are shown in the diagram. 

How far from the fulcrum must  mB  be positioned in order for the 
system to balance?  Keep in mind that measurements are made from the 
center of mass.  It is as though all the mass is mathematically located at a 
point at the center of the object.  It is not rotating, so the clockwise torques 
must equal the counterclockwise torques. 

cw ccwτ τ∑ = ∑  

A B Cτ τ τ= +  

A A B B C Cr F r F r F⋅ = ⋅ + ⋅  

A A B B C Cr m g r m g r m g⋅ = ⋅ + ⋅  

( )( ) ( ) ( )( )2 4 2 2 3Br= +  1.0Br m=  

A B C 

2 m 2 m 

? m 

Fig 10.1 
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1−11  Rotation Detailed, Rolling, and Angular Momentum 

Note: This detail on rotation is needed for AP Physics C: physical science majors, calculus based. 

Center of Mass: Objects rotate around a central axis and around a center of mass.  It is therefore important to be able to 
locate the center of mass.  The center of mass is each for shapes like squares, rectangles, circles, spheres, or equilateral 
triangles.  It is in the middle.  The following equation will find the center of mass of a system of point masses or for a system 
of geometric shapes (those just mentioned, that you can find the center of by inspection) cm m m= ∑ ∑r r .  Unusual 

shapes can be found experimentally by hanging the object from two or more positions, drawing vertical lines from the point 
of attachment of the string, and looking for an intersection.  Or integral calculus can be used.  For this course these last two 
methods will not be discussed. 

Example 11-1: Center of Mass 
Find the center of mass for the object in Fig 11.1a.  It is a thin flat object composed of a 
rectangle (2m by 4m in length, mass 5 kg) and a square (2m long sides, mass 3 kg).  Set up 
a coordinate axis system.  For convenience place the coordinate axis at one corner of the 
object and divide the object into a rectangle and a square, as shown in Fig 11.1b.  Find the 
center of mass the rectangle, relative to the coordinate axis, by inspection, 1 2x y= =, .  
Find the center of mass the rectangle, relative to the coordinate axis, by inspection, 

3 1x y= =, .  Now you can pretend that the rectangle and square are point masses at 
these locations.  The remainder of the problem is the method for solving for point 
masses in two dimensions.  You must work in each dimension separately. 

cm
mxx
m

∑
=
∑

 1 1 2 2

1 2
cm

m x m xx
m m
+

=
+

 
( )( ) ( )( )

( ) ( )
5 1 3 3

1.75
5 3cmx m
+

= =
+

 

cm
myy
m

∑
=

∑
 1 1 2 2

1 2
cm

m y m yy
m m
+

=
+

 
( )( ) ( )( )

( ) ( )
5 2 3 1

1.63
5 3cmx m

+
= =

+
 

The center of mass is located at 1.75 1.63cm m m= +r i j  

 
 
 
 
 
 
 
 
 
 

Rotation: Since every point on a rotating object experiences a different tangential velocity displacement, velocity, and 
acceleration cannot be expressed in terms of meters.  A particle on the outside edge of a rotating object covers a greater 
distance in the same time interval than a particle closer to the center.  The only quantity that both points share in any given 
time interval is the angle through which they move, as shown to the right.  In rotation we have to work in radians instead of 
degrees.  This means that for every variable in linear (translational) motion there is a corresponding variable for rotation.  
And every equation in linear motion has a rotational counterpart.  Displacement  x  is replaced by radians  θ  (radians).  
Velocity  v  is replaced by angular velocity  ω   (radians per second).  Acceleration  a  is replaced by angular acceleration  α  
(radians per second squared)  The following three equations form a bridge between linear motion and rotation and should be 
memorized. x rθ=  v rω=  a rα= .  The chart below, and on the following pages, compares 
rotation to linear motion.  There is an analogous quantity and an analogous equation for rotation that parallels those learned 
in linear translational motion.  Keep the three equations listed above in mind and become familiar with the new quantities. 

Fig 11.1a 

2 m 

4 m 

4 m 

1 

4 

1 

2 

2 3 4 
Fig 11.1b 

rr 

rs 

1 

4 

1 

2 

2 3 4 

Fig 11.1c 
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 Angular Linear 
Position arc length

r
θ =  x  

Displacement 0θ θ θ∆ = −  0x x x∆ = −  

Average Speed 
t
θω ∆

=
∆

 
xv
t

∆
=
∆

 0

2
v vv +

=  

Instantaneous 
Speed 0

lim
t t

θω
∆ →

∆
=

∆
 

d
dt
θω =  

0
lim

t

xv
t∆ →

∆
=

∆
 

dxv
dt

=  

Slope of displacement - time graph 
Average 
Acceleration t

ωα ∆
=
∆

 
va
t

∆
=
∆

 

Instantaneous 
Acceleration 

Tangential Acceleration 

0
lim

t t
ωα

∆ →

∆
=

∆
 

d
dt
ωα =  

0
lim

t

va
t∆ →

∆
=

∆
 

dva
dt

=  

Slope of velocity - time graph 
Kinematic 
Equations 

0 tω ω α= +  

2
0 0

1
2

t tθ θ ω α= + +  

( )22
0 02ω ω α θ θ= + −  

0v v at= +  

2
0 0

1
2

x x v t at= + +  

( )22
0 02v v a x x= + −  

Tangential 
Speed v rω=  

2
T
πω =  

2 rv
T
π

=  

Centripetal 
Acceleration 

Radial Acceleration 
2

2
c

va r
r

ω= = Radial Acceleration is the 

acceleration directed along a radial (spoke) line.  
It is directed toward the center. 

2

c
va
r

=  

Inertia Moment of Inertia: Depends on mass and 
distribution and thus varies for each object 

2 2I r dm mr= = ∑∫  

Since these vary from object to object they are 
usually given.  The three shown here are 
commonly used.  The first one is the common 
shape for pulley, which are the most used. 
Cylinder: 21

2
I MR=  

Cylindrical hoop: 2I MR=  
Sphere: 22

5
I MR=  

m  

Force and 
Torque 

Torque: Unbalance torques cause rotation. 

r Fτ = ×  

net Iτ τ α∑ = =  

Force: Unbalanced forces cause translation. 

F  

net m∑ = =F F a  

Kinetic Energy 
21

2
K Iω=  21

2
K mv=  
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 Angular Linear 
Work W dτ θ= ∫  

 
22

0
1 1
2 2

W I Iω ω= −  

F rW d= ⋅∫  

Area under force – distance curve 

22
0

1 1
2 2

W mv mv= −  

Power dWP
dt

=  P τω=  dWP
dt

=  P Fv=  

Vector Product and Torque: Torque is a cross product of vectors.  The magnitude of a cross product is the area of 
the parallelogram formed by the contributing vectors.  The direction of a cross product vector is determined by using 
the right hand rule.  So the direction of torque is out of the page for counterclockwise rotation, and into the page for 
clockwise rotations. 

Translation vs. Rotation:  Hit an object with a force directed into or out of the center of mass and it will translate 
(linear motion).  Hit an object with a force perpendicular to a radial line extending from the center of mass and at the very 
edge of the object, and the object will rotate.  Hit and object with a force between the center of mass and the edge and it will 
translate and rotate. 
(Note: Planets and satellites follow circular motion, as they are not attached.  Inner planets move faster as they are closer to 
the sun and must have larger tangential velocities.  They also travel a shorter circumference.  Thus they have shorter periods.) 

Angular momentum: Masses that experience linear motion (translation) have velocity and thus have linear momentum.  
Rotating masses have angular velocity and thus have angular momentum.  While linear momentum depends on mass and 
velocity, angular momentum depends on mass, mass distribution, and angular velocity.  Think about it.  In rotating objects 
the points of mass farther from the center are moving faster and thus have higher instantaneous momentum values than those 
closer to the center.  Lots of mass, far from the center of mass, means higher angular momentum than the same mass, near the 
center of mass. 

Angular momentum is conserved.  The radius gets smaller, but angular velocity increases (vice versa as the skater 
moves arms outward).  A galaxy, solar system, star, or planet forms from a larger cloud of dust.  As the cloud is pulled 
together by gravity its radius shrinks.  So the angular velocity must increase.  These objects all begin to spin faster.  That is 
why we have day and night. 

 Angular Linear 

Momentum L r p ωI= × =  p mv=  

Conservation of 
Momentum 

L Li f=  

ω = ωi fI I  

i fp p=  

i fmv mv=  
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Example 11-2: Compound Bodies and Pulleys with Mass 
A compound body consisting of, mA = 6.0 kg,  mB = 8.0 kg,  Mpulley = 1 kg,  
Rpulley = 0.10 m, is shown in Fig. 11.1a. 

What is the acceleration of the system? 
There are three masses, so there are three FBD’s, shown in Fig 11.2b.  
Make note of the interesting new FBD for a pulley.  Gravity acts through 
the center and down, as usual.  The normal force is created by the support 
pushing the pulley away from the table, and it follows the direction of the 
support through the center of the pulley.  The tensions are tangent to the 
pulley.  These tensions are a distance  R  (radius of pulley) from the 
center and they are perpendicular to the  R.  This provides the torque 
that rotates the pulley.  Also note that there are two tensions.  When we 
work with real pulleys that have mass the rope connecting the masses 
has different tensions in every separate segment. 
Set up sum of force and sum of torque equations for relevant masses.  As 
before use the direction of motion to assign positives and negatives.  The 
direction of motion is to the right, clockwise, and then down. 

A AF T∑ =  cw ccwτ τ τ∑ = −  B g BF F T∑ = −  

A Am a T=  B AI R T R Tα = ⋅ − ⋅  B B Bm a m g T= −  

A AT m a=  B A
aI R T R T
R
= ⋅ − ⋅  B B BT m g m a= −  

Combine the three equations above to get  

( ) ( )B B A
aI R m g m a R m a
R
= − −   Substitute in the moment of inertia of a cylindrical disk (pulley) 21

2
I MR=  

( ) ( )21
2 B B A

aMR R m g m a R m a
R

⎛ ⎞ = − −⎜ ⎟
⎝ ⎠

 Cancel out the pulleys radius, group all expression with  a,  and simplify. 

1
2 B B AMa m g m a m a= − −  

1
2A B Bm a m a Ma m g+ + =  

1
2

B

A B

m ga
m m M

=
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 

This looks familiar.  If we did the problem the old way, with a massless pulley, we would look at it as linear, like Fig 11.2c 

It would be total gBF F∑ =  ( )A B Bm m a m g+ =  
( )

B

A B

m ga
m m

=
+

 

This is identical except for the expression for half the pulley’s mass.  Can we just do all pulley problems the old way and just 
add a  1

2
M   to all the regular masses in the denominator.  It seems to work, but you might loose points for not showing work.  

And the  1
2

M   only works with pulleys that have a moment of inertia of  21
2

I MR= .  If it were a spherical pulley, would we 

add  2
5

M   to the denominator, since its moment of inertia is  22
5

I MR= .  Verify it on your own and see. 

Fig 11.2c shows the problem sketched linear.  Any forces that are perpendicular to the direction of motion were removed 
from this sketch.  Vectors pointing in the direction of motion are noted with positive signs and those opposing motion are 
negative.  It is apparent that tension cancels as before.  However, unlike previous work in forces the pulley is not erased as it 
now has mass.  It must be accounted for.  Is there a shortcut method using this linear sketch that would show adequate 
supporting work? 
 

A 

B 
Fig 11.2a 

Fig 11.2b 

A 
TA 

FN 

Fg 

TA 
FN 

TB Fg 

B 

TB 

Fg 

Fig 11.2c 

A 
+TA -TA 

B Fg 
+TB -TB 
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Example 11-3: Rolling Down an Incline 
A spherical mass rolls  2 m  down an incline shown in Fig 
11.3a.  The FBD for the sphere is shown in Fig 11.3b.  In 
figure 11.3c the  gravity and normal force vectors have been 
summed and the component of force down the slope is shown.  
Fgsinθ pulls the sphere down the incline in the usual manner.  
However, the friction force vector is a distance  R from the 
center of the sphere.  These two vectors are perpendicular.  
This creates an unbalanced torque on the sphere, which causes 
it to rotate.  The combined motion of rotating and moving 
down the slope is rolling. 

What is the kinetic energy of the sphere at the bottom of 
the incline?  The sphere is translating and rotating at the same 
time.  The total kinetic energy is the addition of the 
translational and rotational kinetic energies. 

total translation rotationK K K= +  

2 21 1
2 2totalK Mv Iω= +  

It is also equal to the potential energy that converted in kinetic 
energy.  Given the quantities in the problem, this is easiest to solve 

totalK mgh=  ( )( )( )3 0 9 8 2 0 58 8totalK J= =. . . . . 

How fast is the sphere going at the bottom of the incline? 

Now the first kinetic energy equation has relevance,  2 21 1
2 2totalK Mv Iω= + .  Combine this with the moment of inertia 

equation of a sphere  22
5

MR ,  and the equation  
v
R

ω =   which converts angular values into linear values. 

2
2 21 1 2

2 2 5total
vK Mv MR
R

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 2 21 2
2 10totalK Mv Mv= +  27

10totalK Mv=  

Rearrange for velocity, plug in values, and solve. 

10
7

totalKv
M

=  
10 58 8 5 29
7 3 0

v m s⎛ ⎞= =⎜ ⎟
⎝ ⎠

. .
.

 Another expression can be derive here also 
10
7

v gh=  

What is the linear acceleration of the sphere down the inline? 

The length down the ramp is  
hhyp
θ

=
sin

 

 ( )22
0 02v v a x x= + −  

( ) ( )( )
2

210 0 2 0
7

totalK a x
M

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
 

( )
2

210 0 2
7

Mgh ha
M θ

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ sin
 

 
5
7

a g θ= sin  ( ) 25 9 8 30 3 5
7

oa m s= =. sin .  

 
 

h = 2 m 

30o

R = 0.20 m 

M = 3.0 kg 

Fig 11.3a 

Fig 11.3b 

Ffr 

FN 

Fg 

Fig 11.3c 

Ffr 
Fgsinθ R 
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Unit 2  Fluids and Thermal Physics 
2−12  Fluid Mechanics 

Solids: Condensed matter with definite volume and shape.  High intermolecular forces create rigid structure.  Force can 
deform it. 

Liquids: Condensed matter and fluid with fairly definite volume, but takes the shape of its container.  Loose 
intermolecular forces. 

Gases: Fluid only.  Easily compressed, taking shape & volume of its container.  Particle speed interferes with 
intermolecular force. 

Fluids: Substance that can flow (gases and Liquids).  Outside forces cause, unconfined, fluids to flow. 

Pressure: Force applied over an area.  Fp
A

=   F is perpendicular to the surface (normal).  Pressure is a scalar quantity. 

Measured in Pascals.  1 Pa = 1 N/m2.  1 atm = 101325 Pa,  which simplifies to  51 1 10atm Pa= ×  

Density: The amount of matter occupying a certain amount of space.  m
V

ρ =   Measured in  kg/m3  (in chem.   g/cm3) 

The density of water is easy to memorize.  Water is the most common substance on earth, so chemists set its value at 1 g/cm3.  

Water is the reference standard by which all other densities are compared.  But, physics operates on a larger scale with 
different units.  

2

3 31.00 1000H O g cm kg mρ = =  

Pressure and Depth: Pressure increases with depth.  A column of fluid (air we breath or water 
in oceans) has weight and puts a force on the fluid below it, Fig 12.1.  The deeper one is (on the 
surface of earth for air, or at the bottom of the ocean for water) the greater the force and pressure.  The 
equation for pressure at depth is derived by combining the following four equations. 

Fp
A

= , due to fluid aboveF mg= , 
m
V

ρ = ,  and V hA=  p ghρ=  

which becomes 0p p ghρ= +   p0  is the pressure on the surface.  This could be caused by a piston 

in a closed tube, or by the atmospheric pressure for a fluid whose surface is exposed.  Example: a 
scuba diver, at a depth of 80 ft in saltwater, experiences a pressure of 

( ) ( )( )( )5 3 5
0 1 10 1.03 10 9.8 24.4 3.46 10 3.46p p gh Pa atmρ= + = × + × = × =   (3.5 × atmospheric pressure at sea 

level).  How does this translate to force?  Calculate the force on 1 square meter  p F A= ,  so  

( )( )5 23.46 10 1 34600F pA Pa m N= = × =  

Pascal’s Principle: Pressure applied to an enclosed fluid is transmitted, 
undiminished, to every point in the fluid and to the walls of the container.  
This explains the workings of hydraulic lifts, jacks, and brakes.  The pressure 
put in (input) at one end is equal to the pressure put out (output) at the other. 

input outputp p= .  Substitute  
Fp
A

=   on each side to get  i o

i o

F F
A A

= . 

A small input force on a small area creates a large output force on a large 
area.  Work done pushing the piston can also be analyzed. 

i oW W=   which is  i i o oF x F x=   and becomes  i
o i

o

xF F
x

=  

The input distance must be large to get a large output force, Fo. 

h 

A 

F = Fg = mg 

Fig 12.1 

Fo 

xo 

Ao 

Fi 

xi 
Ao 

Fig 12.2 
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Buoyancy: Things float because they are buoyed upward, which requires an upward net force on the object.  It is caused 

by the difference in pressure ( )bottom topp p p∆ = − between the bottom of the object and the top of the object. 

Fp
A

=   combined with  ( )bottom top bottom topp gh gh g h hρ ρ ρ∆ = − = −   results in  ( )bottom top
F g h h
A

ρ= −   which is  

( )bottom topF g h h Aρ= −  or buoyF Vgρ=   Remember this is the density of the fluid and the volume of the fluid 

displaced.  This is the equation for the weight of the fluid displaced. buoy
mF Vg Vg mg
V

ρ= = =   of the fluid. 

Archimedes’ Principle: A body immersed wholly or partially in a fluid is buoyed up by a force equal in magnitude to 
the weight of the volume of fluid it displaces. 
Buoyancy and Density: Density tells whether it will sink or float.  Fig 12.3 diagrams several masses in a fluid. 
 
 
 
 
 
 
 
 
Floats out of water Rising to Surface Neutral Buoyancy Sinking to Bottom Resting on Bottom 

B gF F=  B gF F>  B gF F=  B gF F<  B N gF F F+ =  

obj Fluidρ ρ<  obj Fluidρ ρ<  obj Fluidρ ρ=  obj Fluidρ ρ>  obj Fluidρ ρ>  

obj Fluid Displacedm m=  obj Fluid Displacedm m<  obj Fluid Displacedm m=  obj Fluid Displacedm m>  obj Fluid Displacedm m>  

obj Fluid DisplacedV V>  obj Fluid DisplacedV V=  obj Fluid DisplacedV V=  obj Fluid DisplacedV V=  obj Fluid DisplacedV V=  

 
Specific Gravity: ratio of the density of a substance (ρs) to the density of water (ρw).  . . s wsp gr ρ ρ=  

Example 1-1: Buoyancy 
A 2.0 kg cube, that is 10.0 cm in length on each side, is suspended by both a gray fluid and by a spring as  
shown in Fig 12.4a.  The spring constant is 100 N/m and the spring is stretched 0.15 m. 
What is the density of the fluid?  This is a balanced force problem.  The object is not moving.  Use the  
FBD in Fig 12.4b to sum the forces. 

S B gF F F F∑ = + −  0F∑ =  

S B gF F F+ =  Upward force spring and force buoyancy equals the downward force gravity. 

kx Vg mgρ+ =  

mg kx
Vg

ρ −
=  

( )( ) ( )( )
( ) ( )3 3

2 0 9 8 100 0 15
469

0 1 9 8
kg
m

ρ
−

= =
. . .

. .
 

 
Fluid Dynamics: The overall flow of a fluid can be described, but the motion of the individual molecules or atoms that 
compose the fluid cannot.  We use a theoretical model, known as an ideal fluid.   Ideal fluids have four characteristics. 
Steady Flow: Smooth flow, where all the particles of a fluid have the same velocity as they pass a given point.  The 
particle path is depicted by streamlines that never cross.  This requires low velocities, since high flow rate results in eddies, 
particularly near boundaries, which give rise to turbulence.  Relative velocity is shown by drawing faster flowing fluid 
streamlines closer together. 
Irrotational Flow: No net angular velocities in any portion of the fluid.  i.e., there is no possibility for eddies and turbulence. 
Nonviscous Flow: A nonviscous fluid flows freely without energy loss.  Viscosity is a fluid’s internal friction, and is 
neglected.   
Incompressible Flow: Fluid’s density is constant.  Gases are not incompressible, but sometimes they approximate 
incompressibility. 

m

Fig 12.4a 

Fig 12.4b 
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Fg 

FS FB 
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Fg 

m FB 

Fg 
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Fg 
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Fig 12.3
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Equation of Continuity: If there is no loss of fluid in a closed tube the mass entering must equal the mass leaving 
the tube.  In Fig 12.5 a fluid flows through a tube that is narrow at first and 
then widens.  The volumes of the narrow and wide portions are:
 1 1 1V A x= ∆  2 2 2V A x= ∆  

Substitute  x v t∆ = ∆ : 1 1 1V A v t= ∆  2 2 2V A v t= ∆ . 

Volume relates to mass. 
m
V

ρ =  so m Vρ=  

Substituting  m Vρ∆ = ∆ : 1 1 1 1m A v tρ∆ = ∆  2 2 2 2m A v tρ∆ = ∆  

But, the two shaded sections of pipe were picked because they have equal 
volumes, one long and thin, the other short and wide.  So if the volumes are 
the same, then the mass of fluid in the first section equals the mass of fluid 
in the second section. 

1 2m m∆ = ∆   and thus  1 1 1 2 2 2A v t A v tρ ρ∆ = ∆ .  Time cancels, as does 
density.  In ideal fluids density is assumed to be uniform. 

Flow Rate Equation: 1 1 2 2A v A v=   Flow velocity is greater where the cross sectional area is smaller.  1
2 1

2

Av v
A

=  

Now Analyze the Work done by external forces at ends of the tube in the figure above right. 
F1  is positive (matches motion), while  F2 is negative (opposite motion). 1 1 2 2W F x F x= ∆ − ∆  

Substitute  
Fp
A

=   written as  F pA=  ,  along with  x v t∆ = ∆  1 1 1 2 2 2W p A v t p A v t= ∆ − ∆  

Using the Flow Rate Equation just derived,  1 1 2 2A v A v=   and we simplify to ( )1 1 1 2W A v t p p= ∆ −  

Then use the mass relationship from above,  1 1 1 1m A v tρ∆ = ∆  ( )1 2
mW p p
ρ
∆

= −  

Work is a change in energy  W K U= ∆ + ∆  ( )1 2
m p p K U
ρ
∆

− = ∆ + ∆  

Substitute the formulas for  ∆K  and  ∆U

 
2 2

1 2 2 1 2 1
1 1
2 2

m mp p mv mv mgy mgy
ρ ρ
∆ ∆

− = ∆ − ∆ + ∆ − ∆  

Cancel mass and multiply all by density 
2 2

1 2 2 1 2 1
1 1
2 2

p p v v gy gyρ ρ ρ ρ− = − + −  

Rearrange separating 1’s and 2’s 
2 2

1 1 1 2 2 2
1 1
2 2

p gy v p gy vρ ρ ρ ρ+ + = + +  

Bernoulli’s Equation: 21
2

p gy v constantρ ρ+ + =  

Applying Bernoulli’s Equation to various situations. 

• Horizontal flow ( )1 2y y= : 21
2

p v constantρ+ =  Indicates that pressure decreases if fluids speed increases or 

vice versa. 
• Looking at both Bernoulli’s and the Continuity Equation:  Reduce pipe cross section, then velocity goes up, and pressure 

down. 
• Partially responsible for lift:  Air over the curved surface of a wing goes faster, with lower pressure.  So the slow high 

pressure air on the bottom of the wing pushes upward. 

• Fluids at rest ( )2 1 0v v= = : ( )2 1 1 2p p g y yρ− = −   which is the pressure depth relationship. 
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Fig 12.5 
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Example 1-2: Buoyancy 
A tube, shown in Fig 12.6a, that has an opening at the top and a hole in the side is 
continuously filled with water.  It is filled so that the water level remains constant, 
even though water is leaking from the hole in the side. 

What is the velocity of the water coming out of the hole in the side? 

Use Bernoulli’s Law 21
2

p gy v constantρ ρ+ + =  

Pick two convenient locations: The surface of the water (point 1) and the hole in the 

side (point 2). The fluid flows from the surface  2
11 1

1
2

p gy v constantρ ρ+ + =   to 

the hole  2
22 2

1
2

p gy v constantρ ρ+ + = . 

It is the same fluid, so the constant at both points must be the same.  Therefore,  
2 2
1 21 1 2 2

1 1
2 2

p gy v p gy vρ ρ ρ ρ+ + = + +  

The tube is open to the atmosphere at both ends, so  1 2p p=  

2 2
1 21 2

1 1
2 2

gy v gy vρ ρ ρ ρ+ = +  

Since the level of the water is maintained at a constant point the velocity at point 1 is zero. 
2

21 2
1
2

gy gy v= +  Which simplifies to  ( )1 22v g y y= −   or  2v g y= ∆  

What if we look at this differently? 
Suppose we follow a single water molecule from point 1 to point 2.  Pretend it follows the path (in 
an energy problem path doesn’t matter, so any path will give the same answer) diagramed in  

Fig. 12.6b.  What would its velocity be?  Height is turning into velocity.  21
2

mgh mv=

 2v gh=   or  2v g h= ∆ .  This looks familiar!  Notice that 

mass cancelled, so it does not matter if it is one molecule or a stream of molecules.  Funny how 
Physics ties together and different approaches to problems can yield the same answers. 
Notice that the water leaving the opening is a horizontally launched projectile. 

21
2

y gt=   and  0xx v t=   Just be careful this  y  is different from the  y  used in Bernoulli’s 

equation.  Note the labels on the right side of Fig 12.6a 
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2−13  Thermal Physics 

Temperature: Average KE of the particles.  Depends on average speed only of particles (atoms or molecules) 
A bucket of water at 50o has the same temperature as a cup of water at 50o 

Thermal Energy: Average KE and the mass of the particles  Depends on speed and the mass of the particles. 
A bucket at 50o has more thermal energy than a cup at 100o.  Bucket of $50 bills has more money than a cup of $100’s.  
While the particles are going faster in the cup, there are so many more in the bucket. 

Heat: Transfer of energy between objects that have different temperatures.  The direction of heat flow depends on 
temperature.  From hot objects (more energy) to cold objects (less energy). 

Thermal Expansion: As objects are heated the molecules move faster and they expand.  This is why the liquid in a 
thermometer rises when heated.  It is how a thermostat works.  It is why there are gaps in sidewalks, bridges, & railroad 
tracks.  It is why they don’t fill bottles to the top, they might explode if the liquid expands to much. The change in length is 

0 Tα∆ = ∆ .  Original length 0  is multiplied by α , the coefficient of linear expansion, and the change in temp. 

How long will a 5 m section of steel expand ( 612 10α −= × , from table 13-1, p 343) to if it is heated from 15o to 25oC? 

( )( )( )6
0 5 12 10 25 15 0.0006T mα −∆ = ∆ = × − =  so it will be 5 0.0006 5.0006m m m+ =  

Kinetic Molecular Theory: Gas molecules collide with each other and their surroundings. 
1. Large number of gas molecules (N) moving in random directions and a variety of speeds. 
2. They are far apart, with the separation distances being vast compared to the diameter of each particle. 
3. Molecules obey laws of mechanics.  They attract each other, but we ignore this since the speeds and KE are huge. 
4. Collisions with each other and container walls are assumed to be perfectly elastic.  Conservation of p and KE. 
The higher the temperature the faster the molecules move.  The particles vary in speed, so we can only measure an average.  
Half will be going faster and half slower than the average. 

Average KE reflects this speed.  3
2 BKE k T=  where the Boltzman Constant is  kB = 1.38x10-23.  Average KE is directly 

proportional to temperature.  But velocity is not.  Since 21
2

KE mv=  and 3
2 BKE k T= ,then 21 3

2 2 Bmv k T=  holds true.  Simply 

and rearrange for velocity 3 Bk Tv
m

= .  So we can calculate the speed of the molecules on average 3 3B
rms

k T RTv
Mµ

= = .  

This is known as the Root Mean Square Velocity.  µ  is the mass of a single molecule and is used with the Boltzman 
Constant to determine the average velocity of a single molecule.  M  is molar mass and is used with the gas constant to find 
the average speed of a large group of molecules. 

Pressure: p F area= Measured in 2N m  called a Pascal.  Collisions against an object are felt as pressure. 

Universal Gas Law: pV nRT= (Static problems) or 0 0

0 0

p V pV
n T nT

= (Changing problems) 

Pressure: 51 1 10atm Pa= × .  Volume is measured in meters cubed 31000 1L m= .  Gas constant 8.31 J
mol K⋅

 

Static Problems: One container under a specific set of conditions.  What is the temperature of 30 mol of gas at 4 atm of 
pressure occupying 200 L?  PV nRT=  substituting values ( )( ) ( )( )5 34 10 0.200 30 8.315Pa m mol J mol K T× = ⋅  

Changing Problems: One container under changing conditions, or gas moved from one container to another. 

Boyle’s Law: Pressure and Volume are inversely proportional.  As one goes up the other goes down.  200 L of gas at 4 
atm of pressure is moved to a 400 L container, what is its new pressure?  (n and T aren’t mentioned, so they must stay the 

same, and must cancel).  0 0

0 0

p V pV
n T nT

=  simplifies to 
0 0PV PV= .  Substitute values ( )( ) ( )5 3 34 10 0.200 0.400Pa m P m× =  

Charles’ Law: Temperature and Volume are directly proportional.  As one goes up the other goes up.  200 L of gas at 273 
K are heated to 373 K, what is the new volume?  (P and n aren’t mentioned, so they must stay the same, and must cancel).  

0 0

0 0

p V pV
n T nT

=  simplifies to 0

0

V V
T T

= .  Substituting values 
30.200

273 373
m V
K K

=  
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Combined Law: 200 L of gas at 3 atm and 273 K are moved to a 400 L container and heated to 373 K.  What is the 
pressure?  (n isn’t mentioned, so they must stay the same, and must cancel) 

0 0

0 0

p V pV
n T nT

=  simplifies to 0 0

0

p V pV
T T

= .  Substituting values ( )( )
( )

( )
( )

5 3 33 10 0.200 0.400

273 373

Pa m P m

K K

×
=  

Heating and cooling curve 
Specific Heat Capacity:  c,  Ability to absorb or retain heat. Q mc T= ∆  where  Q  is heat. 

Latent Heat:  L,  energy required to break intermolecular forces causing a phase / state change. Q mL=  

Latent Heat of Fusion:  LF,  energy to melt a solid.  Latent Heat of Vaporization:  LV,  energy to turn a liquid into a gas. 
When phase / state is changing temperature cannot rise since the energy is required for the change. 

 
1-2  Solid    Q c m Tsolid= ∆  
2-3  Melting/Freezing  Q mLfusion=  

3-5  Liquid    Q c m Tliquid= ∆  

5-9  Vaporizing/Condensing Q mLvaporization=  

9-10 Gas     Q c m Tgas= ∆  

If more than one equation is used add the energies obtained  to 
get the total energy. 

How much energy does it take to melt 200 g of ice at 00C and heat it to 60oC?  It has to start as a solid, so it starts at point 2 
on the graph.  Melting is fusion so  L  is the Heat of Fusion for water from table 14-2, p. 377.  Then it rises in temperature, 
so it must end around point 4.  It is a liquid so you need the specific heat, c, of liquid water in table 14-1, p. 373.  (Every 
substance has different melting plateau, different vaporizing plateau, and different specific heats.  Also each substance has 
different specific heats for the three principle states of matter.  This values must be given in chart form or be stated in the 
problem.) 

Melting: Q mLfusion=  ( )( )50.200 3.33 10 66600Q kg J kg J= × =  

Heat: Q c m Tliquid= ∆  ( )( )( )4180 0.200 60 0 50160o o oQ J kg C kg C C J= ⋅ − =  

Total is 66600 50160 116760J+ =  

Thermodynamics 
System and environment: Think of the amount of energy in universe as constant.  But, energy can be added to or 
subtracted from a system (engine, etc.).  Energy comes from or goes to the greater universe (environment).  Energy can 
transfer between systems.  A ball colliding with another can transfer energy to that ball.  Energy can change forms.  If you 
calculate potential energy that energy can change into kinetic energy, electrical energy, thermal energy, etc. 

Internal Energy: All matter has some amount of energy.  Objects feel warm to the touch (internal energy: due to heat 
content or thermal energy of the object) caused by vibration of atoms that make up the object.  If energy is added to an object 
it can start moving or become hotter.  If energy is subtracted it can slow down or become colder.  Or it can be a combination 
of motion and heat.  Most of the beginning problems we do are done pretending that no energy is lost to the environment in 
the form of friction and air resistance.  We often assume the energy stays in one form or that 100% is transferred when 
energy changes form.  In real life energy is lost to the environment.  Also objects become a little hotter in collisions 
increasing internal energy.  100% of the energy put into problems will not be available to cause motion, electricity, or power 
a heat engine.  So many of the problems are not realistic.  They ask for a theoretical unattainable maximum assuming no 
energy loss or perfect energy transfer. 

Heat Transfer: Heat transfer occurs in one of three ways.  Conduction: Objects touch transferring energy. 
Convection: Fluids (gases & liquids) carry heat as they flow.  Hot air or water rises.  Convection currents. 
Radiation: Electromagnetic radiation, as in infrared frequencies of light.  Why does a thermos have an inner container 
separated from the outer by a vacuum?  Why is the inside reflective? 

First Law of Thermodynamics: Statement of conservation of energy.  A ball falls turning PE into KE.  It hits the 
ground causing the molecules to vibrate.  The  KE  is transferred to internal energy and the ball comes to a stop.  Have you 
ever seen the reverse?  If internal energy caused the ball to rise, energy would still be conserved, so why isn’t it reversible. 

U Q W∆ = + .  U∆ : change in the system’s internal energy.  Q : heat added.  W : work done on system (i.e. added). 

+Q: heat added to system.  –Q: heat lost by system.  +W: work done on system.  –W: means work performed by system. 
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There are four basic processes that affect the outcome of the first law.  These can also be visualized as pV diagrams. 

Adiabatic: No heat enters or leaves system, then system is said to be perfectly isolated from its environment.  The process 
happens so rapidly so that heat does not have time to flow in or out of the system.  If a gas filled cylinder is compressed very 
rapidly, heat won’t have time to escape.  If 0Q =  is substituted into the first law 0U W∆ = +  then W U= ∆ . 
 

Isothermal 0T∆ = : Temperature of a system does not change during a process.  The process proceeds so slowly that 
temperature rise is negligible.  Compress a gas filled cylinder so slowly that molecules don’t speed up and temperature will 
not rise. 
Remember, internal energy is directly affected 
by temperature 3 2 BKE k T= . 

If 0T∆ = , then 0U∆ = . 

If this is substituted into the first law 
0 Q W= + , then W Q= − . 

When  T  is constant Combined Gas Law 
reduces to Boyle’s Law  

0 0

0

p V pV
T T

=  0 0p V pV=  

It graphs as a hyperbolic function.  Every  T  
has its own isothermal curve.  Higher 
temperature curves are farther from origin. 

 

 

Isobaric 0p∆ = : Pressure of a system does not change during a process. 

Pressure p F Area=  

Multiply by a change in volume 

( ) ( ) ( )3
2

F V m F d m W
Area m

⋅∆ = ⋅ =  

So W p V= − ∆  

W p V= − ∆  

( )0W p V V= − −  which implies that Work 

is the area under the pV diagram, just as 
Work is the area under the Fd curve. 

 

 

Isovolumetric (Isochoric) 0V∆ = : Volume of a system does not change during a process. 

The piston does not move so there is no force 
through a distance.  No work. 

If 0V∆ =  is substituted into W p V= − ∆  

then 0W =  

There is no area under the curve shown to the 
right. 

 

 
pV Diagrams and Heat Engine Cycles 

T at any point: Use Ideal Gas Law to find temperature at any point 
pV nRT=  

Process AB is Isobaric: W p V= − ∆  and pQ nc T= ∆  

Process BC is Isovolumetric: 0W =  and VQ nc T= ∆  and 

VU nc T∆ = ∆  

Process CA isothermal: W Q= −  

Entire Process ABCA: In the entire process you return to point  A.  The 
significance of this is that you are back to the starting temperature.  This means 0T∆ =  for the process, so 

W Q= −  for the entire process.  Graphically the work for an entire process is the area bounded by all the curves. 
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Carnot Engine pV Diagram 
Hypothetical engine that runs equally well forward and 
backward.  It operated between temperatures (isothermal 
lines).  During the adiabatic phases it exchanged heat at 
hot temperature Qhot and at cold temperature Qcold. 

T at any point: pV nRT=  

Process AB isothermal: 
HW Q= −  

Process BC adiabatic: W U= ∆  
Process CD isothermal: 

CW Q= −  

Process DA adiabatic: W U= ∆  
Entire Process ABCDA: Return to point  A  and the 
starting temperature.  This means 0T∆ =  for the process, so W Q= −  for the entire process.  Work of entire process is 

the area bounded by all the curves. 

Other pV Curves 
 
 
 
 
 
 

  Any points that fit the equation 
0 0p V pV=  are on the same 

isothermal line.  All horizontal lines are isobaric W p V= − ∆ .  All 

vertical lines are isovolumetric 0W = .  The work of a single process 
is the area under the curve.  The work of an entire process in the area 
bounded by the curve. 

Heat Engines: Mechanical energy can be obtained from thermal energy, only when heat is allowed to flow from a high 
temperature to a low temperature.  Example: steam engines, internal combustion engines, and human respiration.  A piece of 
cold wood has high thermal energy (fuel) that can be burned.  This is true for gasoline and the food you eat.  If this energy 
can be tapped it can do work.  There is always a by-product: the hot exhaust of a car and human body heat are the by-
products or exhaust. 

Efficiency: ratio of useful work done to the heat input. 

  1H C C

H H H

Q Q QWe
Q Q Q

−
= = = −  

Carnot Efficiency: an unattainable maximum theoretical efficiency.  Carnot imagined 
a gas cylinder moved from hot to cold and expanding and contracting.  He also imagined 
that all the processes could be done reversibly.  Real processes involve turbulence thus 
making reversal along the same path impossible.  Even under Carnot’s ideal circumstances 
100% efficiency is impossible. 

1H C C
c

H H

T T Te
T T
−

= = −  

Second Law Revisited: No device is possible whose sole effect is to transform an amount 
of heat completely into work. 

Refrigerator: (Heat Pump diagrammed to the right) Pumps heat from one area to another.  
Work needs to be added.  But, what’s happening to QH?  It’s getting bigger.  So overall a 
refrigerators actually produce heat.  As an example, in the process of lowering the inside air 
volume 40 degrees they may raise an equal volume of outside air by 100 degrees. 

Entropy: A measure of how much energy or heat is unavailable for conversion to work.  Heat 
is sometimes called the graveyard of energy.  As Carnot showed, not all the heat energy can be used to do work.  Entropy is 
thought of as disorganization.  As we use more energy we get more heat as a by-product.  Look at oil.  It is composed of large 
well organized molecules.  When we burn it to produce work, we get smaller less organized molecules and heat. The small 
gas by-products of combustion, CO2 and H2O, are more difficult to burn and extract further work from.  Gases are less 
organized than liquids, which are less organized than solids.  Perhaps all highly organized molecules will turn into small 
atoms of gas evenly distributed throughout the universe and they may eventually reach an even average temperature.  If there 
is no heat difference there can be no work.  So life and machines can’t exist.  This is called the heat death of the universe. 

Second Law Re-Revisited: Natural processes to move toward a state of greater disorder (entropy).  The entropy of an 
isolated system never decreases.  Entropy can only really stay the same for idealized (reversible) processes.  So it always 
increases.  The total entropy of any system and the environment increases as a result of any natural process. 
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Unit 3  Electricity and Magnetism 
3−14  Electric Charge, Force, and Fields 

Electrostatics: Involves the dynamics and interactions between charges (q or Q) and electric fields (E).  This causes force 
(F), electric potential (V), and electric potential energy (UE) between charged particles and charged plates.  It is considered 
static since the charges are not transferred between objects. 

Point Charge (q): A quantity of charge that can be reduced to a single point.  A charged sphere, where all of the charge 
acts as though it is located in the center, is similar to gravity where all of the gravity is mathematically located at a planets 
center.  Individual protons and electrons and clusters of these particles are point charges. 

Charged Plates (Q): Two flat conductive surfaces separated by a distance can act as a simple charge storage devise.  
The large amount of charge and energy they hold is distributed over the plates and cannot be localized to a single point.  One 
way to represent a lot of small  q’s  is with a large  Q.  While  q  and Q  are interchangeable in equations,  r  and  d  are not.  
Equations with  r  in them pertain to spherical point charges, and equations with  d  in them are used for charged plates. 

Charge is Conserved: Charges cannot be created or destroyed. 

Charge is Quantized: Comes in set quantities.  All charges are a multiple of the charge on an electron. 

Electricity vs. Gravity: They are both fields and share many characteristics, but have a few critical differences.  The 
charts below compare these two very important field forces to one another. 

Gravitational Fields Electric Fields 
• Fg, Force of gravity is caused by gravitational fields. 
• m, masses generate gravitational fields. 
• g is the gravity field strength. 

• FE, Force of electricity is caused by electric fields. 
• q, charges generate electric fields. 
• E is the electric field strength. 

Newton’s Law of Universal Gravitation 
Force of gravity between two masses.  Force between 
masses that attract is equal and opposite, both masses pull on 
each other with this same value. 
 

 1 2
2g

m mF G
r

=  

 
2

11
26.67 10 N mG

kg
− ⋅

= ×  

Coulomb’s Law 
Force of electricity between two charges:  Force between 
charges that attract/repel is equal and opposite, both charges 
pull/push on each other with this same value.  Electric 
charges attract & repel 

 1 2
2E

q qF k
r

=  1 2
2

0

1
4

q qF
rπ

=
∈

 

 
2

9
2

0

1 9 10
4

N mk
Cπ
⋅

= = ×
∈

 

 12 2 2
0 8.85 10 C N m−∈ = × ⋅  

Force of gravity on a mass in a gravitational field. 

 gF mg=  

Force of electricity on a charge in an electric field. 

 EF qE=  FE
q

=  

Combine above equations and simplify 

 1 2
2

m mmg G
r

=

 
2 ( )mg G not given

r
=  

 This is an important often used formula! 

Combine above equations and simplify 

 1 2
2

q qqE k
r

=

 
2 ( )qE k not given

r
=  

 This is an important often used formula! 
What if you 
• Double one mass?:  Fg  and g double. 
• Double r ?:  Fg  and g are 1/4. 
• Halve r ?:  Fg  and g are quadrupled 
Changes to Mass are directly proportional. 
Changes in distance involve the Inverse Square Law. 

What if you 
• Double one mass?:  FE  and  E  double. 
• Double r ?:  FE  and E are 1/4. 
• Halve r ?:  FE  and  E  are quadrupled 
Changes to Charge are directly proportional. 
Changes in distance involve the Inverse Square Law. 
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Example 14-1: Superposition (Adding electric field vectors) 

What is the force of electricity on a +1 C charge located half way between a –3 C 
charge and a +2 C charge separated by 2 m, as shown in Fig 14.1a? 

Find  FE  for the –3 & +1 chagres, and then the +2 & +1 charges.  Then add the two  FE  
vectors to find  ΣFE. 

1 2
2E

q qF k
r

=  ( )( )
( )

2
9 9

22

3 1
9 10 27 10

1 2 2
E

C CN mF N
C m

⋅
= × = ×

⎡ ⎤⎣ ⎦

 –3 charge attracts the +1 charge to the left, negative direction. 

 ( )( )
( )

2
9 9

22

2 1
9 10 18 10

1 2 2
E

C CN mF N
C m
⋅

= × = ×
⎡ ⎤⎣ ⎦

 +2 charge repels the +1 charge to the left, negative direction. 

Note that the minus sign on the –3C charge was not included in the equation.  The equation solves for the magnitude of the 
vector, which has an absolute value.  Do not include minus signs on charge when solving for force electric.  The minus signs 
are used to determine whether the object will repel or attract.  To the right of each equation is an explanation of how the signs 
on charges are used.  Once the sign on each vector is made then you can sum them. 

Sum the vectors  9 9 927 10 18 10 45 10N N N− × + − × = − ×   The negative sign means to the left 945 10 ,N left× . 

What is the electric field strength at point  P  located half way between a –3 C charge 
and a +2 C charge separated by 2 m, as shown in Fig 14.1B? 
Find  E  at point  P  for the – 3 and then the +2 charge.  Then add the two  E  vectors to find 
ΣE. 

2

qE k
r

=  ( )
( )

2
9 9

3 22

3
9 10 27 10

1 2 2
from

CN mE N C
C m

−
⋅

= × = ×
⎡ ⎤⎣ ⎦

 

 The –3 charge attracts a positive test charge to the left, negative direction. 

 ( )
( )

2
9 9

2 22

2
9 10 18 10

1 2 2
from

CN mE N C
C m

+
⋅

= × = ×
⎡ ⎤⎣ ⎦

 

 The +2 charge repels a positive test charge to the left, negative direction. 
Again the minus signs are not included in the magnitude calculation.  They are used to determine repulsion and attraction. 

Sum the vectors  9 9 927 10 18 10 45 10 N C− × + − × = − ×   The negative sign means to the left 945 10 ,N C left× . 

Alternate way to find the force on the +1C charge placed at point  P.  We solved for the electric field strength at point  P  
independent of a charge existing there.  This is actually preferred, as once we have this value for empty space, we can easily 
put any charge there and find the force.  If we insert a +1C charge at point  P  in Fig 14.1b, then we have the same scenario as 
Fig 14.1a.  But, now that we have the electric field at point  P,  lets see how easy it is to find force. 

EF qE=  ( )( )9 91 45 10 45 10EF C N C C= × = ×   This is the same answer as in the first part above. 

The advantage to this second method is that you can do superposition for the electric field once, and then use it for any 
charge placed at that point.  If you use the force superposition method, you must do a new force superposition problem for 
every charge placed at point  P. 

Example 14-2: Electric Force 
A negatively charged wall repels a charged mass, attached to the wall by a string, shown in Fig 
14.2a.  Fig 14.2b shows the FBD for this scenario, and a diagram of the three vectors added tip 
to tail.  Note that the three vectors sum to zero.  The object is not moving and therefore the sum 
of force should be zero. 
What is the force tension in the string? 

2 22
g ET F F= +  

2 2
g ET F F= +  

2 2T mg qE= +  
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P
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Electric Field Lines: An imaginary way to view the electric field, like the way imaginary contour lines are used on 
maps.  In mapping, steep slopes are diagrammed by drawing the contour lines closer together.  In a similar fashion a 
concentration of any field lines (gravitational, electric, and magnetic) indicates higher field strength.  Gravitational field lines 
are based on the direction of movement of a test mass.  Electric field lines are based on the direction of motion of a 
imaginary positive test charge in an electric field.  As a result electric field lines leave positive charges and enter negative 
charges.  Every charged object generates an electric field.  Field lines leave and enter surfaces perpendicular to the surface.  
The field lines around a proton, an electron, between a proton and an electron, and between charged 
plates as shown in Fig 1.2.  The field direction at any point in the diagrams 
below is easy to identify.  Simply imagine a positive charge at the 
point in question and ask what direction it will go. (+x, -x, +y, -y, 
etc.).  When dealing with a curved portion the field is tangent to a 
curved surface.The 
field is 
solved for a 
point P in 
each case. 
 
 
 
Potential difference or 
Voltage: V Ed=  In gravity it would be  gh.  We never worked with this term since  g  is weak, and does not change 
significantly over short distances.  We normally concern ourselves only with changes in  h,  unless we leave a planet for some 
point in space, or we visit a large gravitational source such as a black hole.  Electricity on the other hand is billions and 
billions of times stronger than gravity.  A change in distance  d  (since no clear  h  exists in electricity) is accompanied by a 
significant change in electric field  E  as well.  The electrical equivalent of  gh  is potential  Ed  and is commonly called 
voltage where  V = Ed. 
Equipotential Lines:  Lines of equal electric potential (a component of potential energy).    If a charge moves along an 
equipotential line it does not change its potential or voltage.  This is like hiking in the mountains along the contour lines 
where your height and gravity above sea level don’t change.  Equipotential lines are always perpendicular to field lines.  The 
dotted lines in the diagrams above are some examples of the many possible equipotential lines.  The electric field  E,  is a 
component of potential (E = V/d) and will not change if potential  V  and distance  d  (or  r) do not change.  If you find the 
electric field strength at  P  in the two left diagrams it will be the same at any equal distance from the center of the point 
charge.  At this distance an equipotential sphere, with radius  r  exists where  Ed  stays the same.  This is why r is used for 
distance around point charges.  The potential  V  and electric field  E  are constant everywhere in a sphere of radius  r.  In the 
right most diagram, we assume that the electric field between the plates is uniform.  So if potential  V  and distance  d  are not 
changing along the straight dotted line between and parallel to the plates, then the electric field  E = V/d  on this line is equal 
to that at point  P.  So potential and electric field depend on the distance  d  between the plates.  Use formulas with  d  for 
charged plates.  The curving electric field in the combined proton / electron diagram and outside the plates in the diagram to 
the right is not equal in strength.  Remember equipotential lines mean that potential is the same, not necessarily that the 
electric field strength is equal.  The electric field is only equal along equipotential lines where distance (d  or  r) from the 
charge/charges is unchanging. 

Faraday Cage: Any enclosed metal structure, even one made of chicken wire, acts as a Faraday Cage.  Charges piles up 
on the outer surface of a metal enclosure.  Due to a combination of q and r at any point within a box, cylinder, sphere, etc. the 
electric field is zero inside.  This is why you are not electrocuted in a car or airplane if it is struck by lightening.  Shielding in 
electronic means Faraday Cage. 

Conductors: Substances in which charges can move freely.  When a conductor is charged 
the individual charges pile up over the outside surface area of a conductor.  The electric field 
inside a charged conductor is zero.  Outside the surface the electric field drops according to 
the inverse square law.  The relationship of electric field to radius, in a conductor, is shown 
in Fig 14.3. 

Insulator: Substance that does not allow charges to move freely.  Insulators can become 
charged.  A plastic comb run through your hair is one example.  But, the charges do not 
distribute over the surface area.  Only the area affected becomes charged. 
 
 
 
 
 

E 

r Fig 14.3 
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3−15  Gauss’s Law 

Note: Gauss’s Law is needed for AP Physics C: physical science majors, calculus based. 

Flux: The amount of a field (gravity, electricity, or magnetism) passing through a defined area of space.  
( )( )Field Strength Areaφ = .  Fields are visualized as lines (vectors) in space.  The closer the lines are to each other the 

stronger the field in that region of space.  Flux can then be thought of as the number of field lines passing through an area.  
The more lines passing through the area the greater the flux is.  Flux is also greatest when the field lines pass through the area 
perpendicular to it.  In Fig 15.1 no field lines pass through the area on the left.  The field lines skim above and below it.  In 
the area at an angle, in the middle, three of five field lines pass through, while 
in the identical area to the right five field lines pass through.  The largest 
available area is exposed to the field when the area is perpendicular to the 
field.  In this section we will deal with the electric flux.  But, the same logic 
can be applied to gravitational flux and magnetic flux. 

Electric Flux: Amount of electric field in an area of space. 
Eφ = ⋅E A .  This is a dot product of vectors, so  cosEφ θ= EA .  But, this appears not to make any 

sense.  Looking at the right area in Fig 15.1 we see that the area and electric field are 90o apart.  
Using the above formula would result in zero flux, in a configuration that was just described as 
having maximum flux.  But, in physics whenever you measure angles in relation to an area a 
normal is used.  A normal is a line drawn perpendicular to the surface.  This convention is used in 
force normal, it is used in flux, and it is used in optics for lenses and mirrors.  Fig 15.2 shows the 
relationship between the area, the normal, and the electric field.  Normal lines are drawn as dashed 
lines perpendicular to the surface.  The angle between the normal and the field is 0o and this results in maximum flux. 

Flux Through a Cube (Closed Surface): The cube in Fig 15.3 has an electric field 
passing through it.  There is zero flux through the top, bottom, front, and back of the cube, as 
the field does not pass through them.  Through the left surface, the electric field is to the 
right and the normal is to the left.  The angle between them is 180o.  This results in a 
negative flux.  When ever a field enters an object the flux is negative.  On the right side of 
the cube, the field is in the same direction as the normal.  The angle between them is 0o.  This 
results in a positive flux.  When ever a field leaves an object the flux is positive.  The left 
area equals the right area, and the number of field lines passing through both areas is the 
same.  The flux in (negative) cancels the flux out (positive).  The net flux is zero. 

Irregular Closed Surfaces: If the area is irregular, then integral calculus must be used to 

find flux  E dφ = ⋅∫ E A .  The circle is added to the integral symbol to denote integration over 

a closed surface, such a sphere or the irregular shape in Fig 15.4.  You are basically finding the 
flux over various small sections of area and summing them together. 

Gaussian Surface: Gauss was concerned with the net flux passing through a closed 
(gaussian) surface.  Gaussian surfaces are any closed surfaces in space that are useful to analyze the problem.  If you are 
looking at a point charge (spherical) then surround it with a spherical gaussian surface.  When looking at a section of wire 
surround it with a cylindrical gaussian surface.  Just like field lines it does not exist, it is a way to analyze invisible fields. 

Analyzing a Proton Using a Gaussian Surface: In Fig 15.5 we analyze the electric field, at 
a distance  r,  surrounding a proton.  The diagram looks circular, but this is really a spherical 
arrangement.  Picture a gaussian sphere at a radius  r  surrounding the proton, use  

E dφ = ⋅∫ E A .  

The symmetrical nature of this gaussian surface allows us to move  E  outside of the integral,  

E dφ = ∫E A .  We know the surface area of a sphere, and can avoid its integration ( )4E rφ π= 2E .  

Previously we solved for the electric field at a point point  
2

qk
r

E= , and we know that  
0

1
4

k
π

=
∈

.  

Combining the three previous equation leads to  ( )2
0

1 4
4E

q r
r

φ π
π

⎛ ⎞
= ⎜ ⎟∈⎝ ⎠

2 , which simplifies to 
0

E
qφ =
∈

.  Note that the flux 

is the same at any radius  r.  The flux equation gets larger by the square of  r,  but the electric field decreases by the square of  
r.  When the equations combine  r2  cancels.  The area grows but the proton’s electric field is spread over a larger area.  Thus 

the effect of increasing/decreasing  r  cancels.  So  E dφ = ⋅∫ E A   and  
0

E
qφ =
∈

.  Therefore, 
0

E
qdφ = ⋅
∈∫ E A=  

Fig 15.1 

Fig 15.3 

Fig 15.4

r 

Fig 15.5 

P 

Fig 15.2
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Gauss’s Law: Gauss introduced the gaussian surface concept, and derived the previous formula 
0

E
qdφ = ⋅
∈∫ E A= .  He 

also showed that this relationship works for any closed surface.  It is easy to work with symmetrical objects that have known 
surface areas since you can avoid the actual integration.  But, if the integration is performed over any irregular closed surface 
the relationship can be shown to hold true. 
There are two ways to use a gaussian surface. 
1. The surface can enclose at net charge.  The proton in Fig. 15.5 was such an example.  In these cases the above formula 

holds true.  Stated formally: The net flux through any closed surface surrounding a point charge  q  is given by  

0
E

qφ =
∈

.  This can be a single proton or a single electron.  It can also be a group of charges.  You must work with the 

net charge enclosed by the surface.  The logic is the same as that shown for the lone proton on the previous page. 
2. The surface can enclose zero net charge.  The charges could be outside the 

surface.  In Fig. 15.6 the proton is outside the gaussian surface.  Note that 
every field line entering the gaussian surface (negative flux) eventually exist 
the gaussian surface (positive flux) at another point.  The positives and 
negative cancel.  The net flux is zero.  The net electric flux through a closed 
gaussian surface that surrounds no charge (or zero net charge) is zero.  
Looking back at the cube in Fig. 15.3 we see that the net flux is zero through 
the cube (a closed gaussian surface).  This holds true even if the surface is 
highly irregular. 

Example 15-1: Electric Flux Through Various Surfaces. 
Fig 15.7 shows various gaussian surfaces drawn around several charges. 
Find the electric flux through each surface. 
S1: holds a  +Q  and  -Q  charge.  The net charge is zero. 

 
0

E
qφ =
∈

 ( ) ( )
0

E

Q Q
φ

+ + −
=

∈
 0Eφ =  

S2: holds a  +Q,  -Q,  and  +2Q  charge.  The net charge is +2Q. 

 
0

E
qφ =
∈

 ( ) ( ) ( )
0

2
E

Q Q Q
φ

+ + − + +
=

∈
 

0

2
E

Qφ +
=

∈
 

The positive flux indicates that the electric field through surface  S2  is moving outward, as it should from a positive charge. 

S3: holds a  +2Q,  -Q,  and  -3Q  charge.  The net charge is –2Q. 

 
0

E
qφ =
∈

 ( ) ( ) ( )
0

2 3
E

Q Q Q
φ

+ + − + −
=

∈
 

0

2
E

Qφ −
=

∈
 

The negative flux indicates that the electric field through surface  S3  is moving inward, as it should from a negative charge. 

S4: holds a  +Q,  +Q,  +2Q,  -Q,  and  -3Q  charge.  The net charge is zero. 

 
0

E
qφ =
∈

 ( )( )( ) ( ) ( )
0

2 3
E

Q Q Q Q Q
φ

+ + + + − + −
=

∈
 0Eφ =  

When viewed close up a collection of charges may seem complicated.  Look at the three charges inside surface S2.  Close up 
we see  +Q,  -Q,  and  +2Q  charges.  If we drew the electric field lines it would be a very complicated three-dimensional 
diagram.  However, if we stepped way back, we would see a very small point with a  +2Q  net charge.  At a great distance it 
would look like the electric field of a point charge.  So when we draw a gaussian surface around these three charges we are 
analyzing them as a single point charge.  The field lines that leave the system are those left over after tying the charges 
together. 
 

Fig 15.6 

S1 +Q 

-Q 

+2Q 

-3Q 
S3 

S2 

+Q 

S4 

Fig 15.7 
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3−16  Electric Potential 

Electric Energy Compared to Gravitational Potential Energy: Electric fields created by charged plates (Q) 
are directed from positive to negative.  Electrons (-q) or protons (+q), which have their own electric fields, experience a force 
when placed between plates.  The positive proton follows the electric field, while the electron moves opposite the field. 

Gravitational Fields Electric Fields 
There is only one kind of mass and it only attracts.  In the 
following scenarios a mass will be moved in a gravitational 
field created by the planet earth. 

Two types of charge that repel and attract.  Electrical theory 
is based on what positive charges do.  The following 
scenarios show a positive charge moved in an electrical field. 

 
 
 
 
 
 
 
 
 

 

• Gravitational Field acts from + sky to – ground. 
• Masses naturally move in the field direction. 
• To lift a mass opposite the field direction, from  A  to  B,  

you must add energy.  You must do  +W. 
• Work Energy Theorem states that  W = ∆ Energy. 
• Point  A  has less potential energy than point  B. 
• Moving from  A  to  B  increases  Ug. 
• The increase (change) in  Ug  equals the work done. 

Masses only attract each other. 
They only attract and thus fall toward each other. 
 
But gravity is very weak, billions and billions of times 
weaker than electricity.  So in electric force problems gravity 
is ignored.  It is there, but it is mathematically irrelevant.  
One exception is the Milikan Oil Drop Experiment, where he 
placed excess charge on oil drops.  The oil drops have 
significant mass compared to electrons & the gravity on the 
oil drops (not the electrons) matters. 

• Electric Field acts from + plate to – plate. 
• Positive charges naturally move in the field direction. 
• To move positive charge opposite the field direction, 

from  A  to  B,  you must add energy.  You must do  +W. 
• Work Energy Theorem states that  W = ∆ Energy. 
• Point  A  has less potential energy than point  B. 
• Moving from  A  to  B  increases  UE. 
• The increase (change) in  UE  equals the work done. 

But, Electricity has positives and negatives. 
Opposite charges attract and positive charge in electric fields 

act just like masses in a gravity fields. 
Negative charges follow the same rules but move in the 

opposite direction.  They fall up, so to speak.  They are 
repelled by the negative ground and attract to the 
positive. 

In addition to this like charges repel.  So while it is similar to 
gravtiy there is added complexity.  The math is the same, 
but the directions of fields, forces, and velocities can be 
confusing. 

 m   causes gravity 
g   measure of field strength 
h   distance above ground 

q  causes electricity 
E  measure of field strength 
d  distance above negative plate (ground) 

Gravitational Potential Energy gU mgh=  

In Newtonian Mechanics there is no expression similar to 
Electric Potential.  In electricity V Ed= , but ? gh=  
The other equation for potential energy of gravity was solved 
in the mechanics section on gravity, as follows: 

g g gW U F r= ∆ = ∆ .  Set the initial displacement as zero 

and it simplifies to g gU F r= .  Use this with 

1 2
2g

m mF G
r

= −  to get 1 2
2

gU m mG
r r

= − .  This simplifies 

to 1 2
g

m mU G
r

= − . 

Electric Potential Energy EU qEd=  

New quantity in electricity VE
d

=  so V Ed=  

Substitute V Ed=  into the electric potential energy 
equation and you get its final form
 EU qV= . 

Combine EU qEd=  & 2

qE k
r

=  to get 

2E
qU q k d
r

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 r  and  d  cancel since both measure 

distance.  1 2
E

q qU qV k
r

= =  

+

Ground   h= 0 

B 

A g AU mgh=  

g BU mgh=  

A 

Ground   d = 0 

B 

+ + + + + + + + + +

-  -  -  -  -  -  -  -  -  -  -   

?EU =  

+
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Gravitational Fields Electric Fields 
Work: gW U mg h= ∆ = ∆  Work: EW U q V= ∆ = ∆  

 Electric Potential Due to Several Charges 

Combine 2

qE k
r

=  & 
VE
d

=  to get 2

V qk
d r
=   

r  and  d  cancel since both measure distance. 

Simplifies to 
qV k
r

=  and is written as i

i i

qV k
r

= ∑  

Electric Potential is easily confused with Electric Potential Energy.  Even though they sound similar they 
are different variables.  Unfortunately there are also a number of expressions for each variable.  Know the following! 
V: Potential, Electric Potential, Potential difference, and Voltage. 
UE: Potential Energy, and Electric Potential Energy. 
You can tell if it is UE, as it has the critical word Energy. 

Example 16-1: Electric Potential Due to Several Charges 
What is the electric potential at point  P  located half way between a –3 C charge and 
a +2 C charge separated by 2 m, as shown in Fig 16.1? 
Potential is not a vector.  This time just sum the quantities in a very straight forward 
manner, using the equation below.  Since it is not a vector the minus signs on the charge are included in the equation. 

i

i i

qV k
r

= ∑  
2

9 9 9
2

3 29 10 9 10 9 10
1 1

N m C C N mV V
C m m C
⋅ − + ⋅⎛ ⎞= × + = − × = − ×⎜ ⎟

⎝ ⎠
 

Example 16-2: Electric Field, Potential, and Potential Energy 
A +2×10-6C charged mass is located 2 m to the left of point  P,  as shown in Fig. 16.2a 
Solve for the Electric Field at point  P in Fig 16.2a. 

2

qE k
r

=  ( ) ( )
( )

6
9 3

2

2 10
9 10 4.5 10 , left

2
E N C

−×
= × = ×  

Remember, electric field is a vector.  Do not include the minus sign on the, -2C charge, in 
the math when solving for the magnitude of the field.  Use the minus on the charge to 
establish the direction of the field.  Electric field is directed toward negative charges 
(ground), just as the gravity field is directed downward (-) toward the ground. 

Solve for the Electric Potential at point  P  in Fig 16.2a. 

i

i

qV k
r

= ∑  ( ) ( )
( )

6
9 3

2 10
9 10 9 10

2
V V

−− ×
= × = − ×  

Voltage is not a vector.  Just plug in the values, minus signs and all, as you see it.  There are no worries about direction. 
Another  –2 C  charge mass is moved to point  P, as shown in Fig 16.2b.  Solve for the systems Electric Potential 
Energy. 

( )( )6 3 22 10 9 10 18 10EU qV J− −= = × × = ×  or ( ) ( )( )
( )

6 6
9 21 2

2 10 2 10
9 10 1.8 10

2E
q qU k J

r

− −
−

× ×
= = × = ×  

If the charged masses are released from this position, what will their final velocities be?  If this potential energy is 
released the charges will repel and begin moving.  The energy of motion is kinetic energy.  Try conservation of energy, 
potential turning into kinetic.  Just remember there are two charged masses, each having kinetic energy.  This problem will 
then require mass: both charges are identical with a mass of 3×10-12 kg. 

1 2q q EK K U+ =  ( ) 2 1 212 charges
2

q qmv k
r

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 ( )( )( )
( )( )

9 6 6
41 2

12

9 10 2 10 2 10
7.75 10

3 10 2
kq qv m s
mr

− −

−

× × ×
= = = ×

×
 

This final velocity is reached at infinity, where the potential energy is zero.  Can you do this problem in reverse? 

Fig 16.1 

P +2C -3C 

Fig 16.2a

P –2×10-6 C 

P 

–2×10-6
 C 

–2×10-6 C 

2 m 

 

Fig 16.2b 
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P 

+2×10-6 C 

2 m

+2×10-6 C 

Example 16-3: A Two Dimensional E, V, and UE Problem 
An equilateral triangle is formed by two +2.0×10-6 C charges and point  P, as shown in Fig 16.3a.  Each side is 2 m long. 
Solve for the Electric Field at point.  Since this problem involves vectors that are not on the  
coordinate axis, vector components or a geometric trick must be used. In the component method  
you will solve for the  Ex’s and  Ey’s  from each charge, then add them to get the resultants in both  
the  x  and  y  directions. Then Pythagorean Theorem them together to solve for  ΣE.  Fig. 16.3b  
shows the vector components needed and this method is shown below 
The Long Way 
The charges have the same magnitude and are the same distance from  P.  Therefore, the  
electric field is the same for both. 

2

qE k
r

=  ( ) ( )
( )

6
9 3

1 2 2

2 10
9 10 4.5 10

2
E E

−×
= = × = ×  

Convert to components. 
3

1 1 cos 4.5 10 cos 60 2250o
xE E θ= = × = +  3

1 1 sin 4.5 10 sin 60 3897o
yE E θ= = × = +  

3
2 2 cos 4.5 10 cos120 2250o

xE E θ= = × = −  3
2 2 sin 4.5 10 sin120 3897o

yE E θ= = × = +  

1 2x x xE E E∑ = +  
1 2y y yE E E∑ = +  

2250 2250 0xE∑ = − =  3897 3897 7794yE∑ = + = +  

Then Pythagorean Theorem and Arctangent the  x  and  y  vectors to get the  ΣE. 

( ) ( )2 22 2 0 7794 7794x yE E E N C∑ = + = + =  1 1 7794tan tan
0

y

x

E
E

θ − −= =   this does not solve, but looking at the 

diagram it is apparent that the two  y component vectors are pointing at  90o.  7794 90oN C at  or 7794 ,N C y direction+  

You wouldn’t have known that the direction was  +y  if you neglected to draw the diagram.  In addition, drawing and looking 
at the diagram reveals an easy shortcut. 

Short Way 
Both charges are the same, and all distances are the same.  So the  x-component vectors are equal, as are the  y-component 
vectors.  If you imagine all the components added tip to tail it is apparent that the  x-components cancel.  0xE∑ = .  This 
means that the final solution is the  y-component doubled.  ( )3

1 2 2 2 4.5 10 sin 60 7794o
y y yE E E E N C∑ = + = = × = .  A glance 

at the diagram shows that this is pointing in the  +y-direction.  7794 ,N C y direction+ . 

Always draw a vector diagram and think about it before you do too much work. 

Solve for the Electric Potential at point  P  in Fig 16.3a. 

i

i

qV k
r

= ∑  ( ) ( )
( ) ( ) ( )

( )

6 6
9 9 4

2 10 2 10
9 10 9 10 1.8 10

2 2
V V

− −+ × + ×
= × + × = ×  

Voltage is not a vector.  Just plug in the values, minus signs and all, as you see it.  There are no worries about direction. 
Another  +2 C  charge mass is moved to point  P.  Solve for the Electric Potential on this new added charge. 

There are three charges so the equation  1 2
E

q qU k
r

= may not help.  Try  EU qV= .  We just calculated the voltage of 

pressure, at point  P,  due to the two original charges.  Now a new charge is introduced.  The potential energy of this charge is 
a function of the voltage (from the other charges) pushing on it, and the amount of charge it has.   

( )( )6 42 10 1.8 10 0.036EU qV J−= = × × =  

This is also the amount of work needed to push this new charge from infinity (zero potential energy) to point  P. 
If this charge were to be released this potential energy would be converted into kinetic energy on this one charge.  

1E chargeU K=   and  21
2

qV mv= .  If all three charges are released then the potential energy converts into kinetic 

energy of all three, with each receiving one third.  3E chargeU K= ,  so  3EU K= and  213
2

qV mv⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

Fig 16.3b
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Movement of Mass m/Charge  q  Parallel and Perpendicular to Gravity / Electric Fields 

Movement Parallel to Gravitational Field Movement Parallel to Electric Field 
 
 
 
 
 
 
 
When masses fall from + to –, PE changes to KE 

 21 ( )
2

mgh mv not given=  

 
 
 
 
 
 
 
When positive charges fall from + to –, PE changes to KE 

 21 ( )
2

qV mv not given=  

Gravity is simple since it is directed toward any mass, and 
masses are of one type.  They fall toward each other. 
 
But, plates are not always up and down like gravity.  And 
there are two types of charges.  You must remember that 
electrical theory is based on positive charge, and that the 
direction of the electric field is positive to negative (the 
direction a positive test charge would move).  If negative 
charges are involved then the direction of force and motion 
are reversed.  One of the plates is often depicted with a hole 
in it.  This is the basis of a charge gun.  Charges will 
accelerate toward the plate with the hole, and some will pass 
through the opening.  In our problems the field is assumed to 
be uniform between the plates (like gravity is assumed to be 
9.8 anywhere close to Earth’s surface, even though it actually 
changes slightly with height).  And the field is assumed not 
to extend beyond the plates (It does but is weak).  In the 
example to the right the plates have been rotated 90o reversed 
and then a negative charge is used.  Be prepared for 
anything!!!!!!! 

 
 
 
 
 
 
 
 
 
 
 
 
The electric field is directed – x, but the negative charge does 
not follow the field as a positive charge would.  It moves 
instead + x.  But the equation is the same. 

 21
2

qV mv=  

Note: If the charges are electrons and protons, there will be 
a difference in final velocities since electrons have less 
mass than protons. 

Projectile Motion 
  Sky ( + ) 
 
 
 
 
 
 
 
 ground ( – ) 
 
 
 
In gravity the acceleration is known,  g = 9.8m/s2 
 
Horizontal launch (as drawn): 0 0xv v=  and

 0 0yv =  

2
0 0

1
2xx x v t at= + +  2

0 0
1
2yy y v t gt= + +  

0 ( )x v t not given=  21 ( )
2

y gt not given=  

Projectile Motion 
 
 
 
 
 
 
 
 
 
The acceleration of electricity must be solved as it is 
different for every set of plates. 

EF F∑ =  ma qE=  
qEa
m

=  

Horizontal launch (as drawn): 0 0xv v=  and

 0 0yv =  

2
0 0

1
2xx x v t at= + +  2

0 0
1
2yy y v t at= + +  

0 ( )x v t not given=  21 ( )
2

y at not given=  

No  g  (electricity is so strong gravity is ignored).  So use we 
use  a  which is the acceleration caused by the electric field. 

 

+q EU qEd qV= =
+ + + + + + + + +
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Example 16.4: Combining the parallel and perpendicular electric fields into one problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 
 
 
 
 
 
 
  
 
 
 
In this scenario 
An electron is accelerated through a potential difference by the plates to the left.  Remember when any field acts parallel to 
an object it will either accelerate or decelerate the mass or charge.  The field is always assumed to be uniform between the 
plates (same strength everywhere, and it is assumed not to extend beyond the plates).  Upon exiting the first set of plates the 
electron moves at constant velocity due to its inertia.  Then it enters a second set of plates.  This time the field is 
perpendicular.  Fields that are perpendicular to motion cause either projectile motion or circular motion depending on 
whether the field is linear or radial.  The electron above experience projectile motion due to the linear field, although it 
appears upside down compared to a gravity problem.  The electron continues in a straight path due to its inertia once it leaves 
the plates. 
 
Given: The electric field  E1  of the first plates and the distance between them  d,  or the charge on the plates  Q1  and the 

capictance of the plates  C1. 
 The mass  me  and charge  qe  of an electron accelerated by the plates. 
 The length  x2  of the second set of plates, the vertical displacement  y2  of the electron,  d2  the distance between 

the plates. 
Find: The electric field  E2  and potential difference  V2  of the second set of plates. 
 The speed  vf  of the electron leaving the second set of plates. 
 Be able to draw the path of the electron from beginning to end. 
Don’t Confuse small  v  for velocity and capital  V  for voltage. 
 
Try this on for size: What is  E2  in terms of  E1  and any of the other above variables and constants that are relevant? 

 1 2 2
2 2

2

4E d yE
x

=  

Anything is possible: The firing: Plates can be reversed to fire a proton.  Plate charge may not be marked, but may be a 
question.  The electric field will not be drawn, instead they will require you to draw the field or to state its direction 
according to the coordinate axis, Etc.  The deflection: Plates can be reversed and/or a proton could be used.  Plate 
charge may not be marked, but may be a question.  The electric field will not be drawn, instead they will require you to 
draw the field or to state its direction according to the coordinate axis, Etc. 

2y  

2x  

2d  

1d  

Projectile Motion 
of Charge 

2
2

2

VE
d

=  

EF F
ma qE
∑ =

=
 

21
2

y at=  
ox v t=  

1
1

1

QC
V

=  

21
2

qV mv=  1
1
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d

=  
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Fig 16.4 
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3−17  Capacitance 

Capacitors or Charged Plates:  Large  Q.  Capacitors are a way to store electrical charge and 
energy.  A voltage (potential difference) is needed to create the static electric build up on the plates.  The 
plates can be discharged, releasing energy, by providing a path for the electrons to flow between the plates. 

Capacitance:  C,  is the capacity of the capacitor to hold charge.  Think of batteries as electrical pumps, 

and voltage as electrical pressure that makes it all happen.
0

AC
d

ε= .  Increasing the area increases the space 

for the charges on each plate.  Since each plate holds like charges, that repel each other, increasing the area 
creates more room for the charges and lowers electrostatic repulsion.  If the distance between the plates is lowered then the 
positive charge on one plate come closer to the negative on the other.  The plates attract each other.  To keep charges from 
jumping from one plate to the other an insulating is placed between the plates.  For the AP Physics B class the insulating 
substance will be a vacuum. 

Dielectrics: The real formula for capacitance is 0 AC
d

κε
= .  ε0  is the permittivity of free space, and  κ  is the dielectric 

constant.  The dielectric constant varies from substance to substance.  κ = 1 for a vacuum, resulting in the above equation. 

QC
V

=  is the capacitance  C  in terms of the charge stored  Q  and the batteries potential (pressure)  V  to pump charges onto 

the plates.  Since the charges would prefer to stay evenly distributed and neutral on both plates work must be done to separate 
the charges.  Electrons, which are loosely bound by their atoms, are made to move from one plate to the other, by the 
potential  V.  Remember electrons move in a direction that is opposite that of the electric field.  They fall upward toward the 

positive plate and gain potential energy.  21 1
2 2cU QV CV= = During this process there is a change in energy, or work.  

Disconnect the battery and you have stored the charges on the plates.  Connect a wire between them and the charge can flow.  
The quantity of energy that was stored is released and can be used to do an equal quantity of work.  You can think of 
electricity as water.  If you pump water up to a water tower it has high potential energy.  If you turn off the pump it will flow 
back to the ground.  A capacitor is an electrical water tower where charge is stored temporarily until it is needed.  So if the 
electrical circuit needs to flush all of its toilets simultaneously the capacitor is allowed to discharge.  It is then refilled for the 
next big flush.  Q  is the water pumped into the tower.  V  is the pumps pressure.  Why is EU qV=  while 1

2cU QV= ?  

Remember  Q  is the charge of the plates themselves.  The first electron moved onto the plate does so easily.  But the second 
is repelled by the first, and the third by the first two.  It becomes harder to put more electrons on the plate since repulsion 
becomes higher with each electron.  The positive plate becomes more positive pulling the electrons back as well.  The rate of 
charges moved starts out high and declines to zero.  Average the high rate initially with zero at the end and you get half of the 
initial rate.  If you pump water up a water tower it goes fast at first.  But, the weight of the water filling the tower begins to 
make it harder to pump, until the force of the water in the tower pushing down equals the force of the pump pushing water 
up.  Average the fast pumping at the start with zero pumping at the end, and you get half. 
Circuits containing Capacitors: Several capacitors in series or parallel, or in combination can add up to act like one 
capacitor in a similar manner as resistors do.  The rules for capacitors in circuits are opposite the rules for resistors (presented 
later).  However, similar problem solving techniques apply.  1 1

s iiC C
=∑  

P i
i

C C=∑  

Example 17.1: Equivalent Capacitance 
What is the equivalent capacitance of two 50 µC connected in series, Fig 17.2a? 

1 1
s iiC C
=∑  1 1 1 2

50 50 50sC F F Fµ µ µ
= + =  50 25

2s
FC Fµ µ= =  

Placing capacitors in series creates less capacitance.  Sometimes you need a specific amount of 
capacitance, but can’t locate a capacitor with the exact needed value.  The battery has a harder time 
pumping the two capacitors up, in this configuration. 
What is the equivalent capacitance of two 50 µC connected in parallel, Fig 17.2b? 

P i
i

C C=∑  50 50 100PC F F Fµ µ µ= + =  

Placing capacitors in parallel is the same as increasing the area of the plates and therefore increases the capacity of the new 
combined capacitor 

50 µF 50 µF 

Fig 17.2a 

50 µF

50 µF

Fig 17.2b

Fig 17.1 
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3−18  Current, Resistance, and DC Circuits 

Current: The flow of electricity.  Current  I  is considered positive (due to old convention).  We now know that the 
electrons flow, but think of current as positive.  To talk about actual electron flow we must say electron current or negative 
current.  Positive current flow follows the direction of the electric field, so negative flow is counter to the electric field. 

QI
t

∆
=
∆

 It’s a rate (divided by time).  But, it is unlike velocity where we measure the distance the car went.  Instead we 

stand still and count how many charges,  Q  (large amount of charged particles), go by in an amount of time (1 second). 

Resistance: When water flows down a stream it runs into resistance, such as rocks and 
sand, etc.  When current flows in a length of wire, Fig 18.1, internal properties of the wire 
slows the current.  Resistance is like friction countering the forward progress of the 
electrons.  Conductors slow the current very little, while insulators have lots of resistance, 
and slow it drastically.  All appliances, and even the sources of electricity like batteries have resistance.  There are also actual 
resistors built into circuits to help control electrical flow to exact quantities in various parts of the circuit. 

R
Area
ρ

=  Resistance is a function of resistivity, ρ , wire length, , and cross sectional area.  Resistivity, ρ , is like the 

coefficient of friction.  It is derived by experimentation.  Different materials have different natural resistances.  Gold has very 
low resistance, while copper is not quite as good, but it is cheaper.  So let’s worry about length and cross section of wire.  
Make length small and area big, so the answer is  d.  The longer the wire the more resistance it has.  And resistance is like 
friction.  What type of energy does some of the KE turn into when an object is slowed by friction?  Heat.  What kind of 
energy is produced when charges are slowed down by resistance?  Heat.  What do you feel when you touch an electrical 
component, like a stereo?  It gets hot.  Heat loss is disadvantageous.  You’re losing valuable energy, wasting money on you 
electrical bill, and increasing entropy.  Hot wires also have more resistance.  Minimizing resistance is advantageous.  But, 
sometimes you need to create resistance if you have components that can only handle certain amounts of power, energy, 
voltage, etc.  In addition wires themselves have like resistors.  One goal in circuit design is to shorten the wires between 
components to minimize power loss and heat.  How much energy is lost in the transmission wires from Hoover Dam? 
Important equations for circuits. 

V IR=  P IV=  
WP
t

=  2 ( )P I R not given=  
2

( )VP not given
R

=  

DC Current: Direct Current is created in batteries, by an electrochemical reaction.  These reactions follow entropy and 
run in one direction producing one way current that is also even in the amount that is produced.  The reaction can be reversed, 
as entropy can, if you put more energy into recharging the battery than you will recover from the battery when it is used.  
Direct Current, means it travels in one direction only following the electric field lines.  The battery pumps charges by 
creating a potential difference (voltage) between the ends of the circuit.  The positive terminal (positive plate) is a region of 
high potential energy.  At the other end of the circuit (wires and components) is a negative terminal (negative plate) that is a 
region of low potential energy.  In a 12 V battery the positive plate is the 12 V plate, while the negative plate is the 0 V plate.  
Positive current (positive charge) wants to fall toward the ground (negative plate) through the potential difference.  This is the 
direction of the electric field, which is the direction positive charge moves.  (Just remember the electrons really flow, so it’s 
all backwards.  But, mathematically you get the same numbers). 

AC Current: This current comes from generators and is best understood when looking at electromagnetic induction.  For 
now AC current is a current that decelerates to a stop and then accelerates in the opposite direction for a while, then it repeats 
this process over and over again.  The charges move back and forth at 60 Hz (60 times a second) in US circuits.  Not only 
does direction change, but so does the amount of current.  The slowing, stopping, and speeding up creates a sinusoidal current 
over time. 

Skier Analogy: A ski lift (battery or generator) elevates skiers (charge) from the lodge (negative plate, 0 V) to the top of 
12 V Mountain (positive plate, 12 V) raising both they’re potential (V = Ed) and potential energy (UE = qV).  The skiers 
(charge) must follow the gravitational field (electric field) back to the lodge (negative plate, 0 V) through the ski resort 
(circuit).  There are several possible runs (wires) for the skiers (charge) to use.  Because the skiers (charge) are losing 
potential energy as they fall, and because energy must be conserved, the potential energy must be turning into another form 
of energy.  It is turning into the kinetic energy of the skiers (charge).  Then the skiers (charge) run through gates (appliances, 
light bulbs, etc.) and they transfer kinetic energy to the gates doing useful work (browning toast, lighting up your room).  
Unfortunately, the skiers also loose some energy in the gates (appliance, lamp, etc.) to friction (resistance), which creates 
heat.  Also the mountain is covered with moguls (resistors) put on the slopes to purposely slow the skiers (current).  As they 
ski (flow) down the mountain they loose potential energy.  They use up all of their potential (height) and potential energy 
going through gates (appliances, lights, etc.) and moguls (resistors).  The skiers (charge) arrive at the lodge with no energy 
and no potential.  They are sent through the process until the switch is opened (resort is closed). 

Fig 18.1
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Circuits Containing Resistors 
Series:  All resistors are in line.  Resistors are like sections of wire, designed to slow current.  Examine the resistivity of two 

sections of wire placed in series, as shown in Fig 18.2.  R
Area

=
ρ

 

  is doubled, but cross sectional area stayed the same.  So  R  
doubles.  If there were three wires  R  would triple.  This makes 
sense.  Lets pretend they make your commute on the freeway longer, but they didn’t build more lanes to widen the road.  So 
you experience the same traffic (resistance) for two or three times as long a road.  So in 

series Resistance adds s i
i

R R=∑  or 1 2 3 ...sR R R R= + + +  

Now xamine the resistivity of two sections of wire placed in parallel, shown in Fig 18.3.  
  stays the same, but cross sectional area doubles.  It’s more complicated than above.  

Area is in the denominator.  If Area doubles  R  is cut in half.  If there were three wires  R  
would be cut in third.  This makes sense.  Its like they expanded the freeway from four lanes to 8 or even 12.  You travel the 
same distance as before but now have less traffic and congestion. 

So in parallel 
1 1

p iiR R
=∑  or 

1 2 3

1 1 1 1 ...
pR R R R
= + + +  Please don’t solve for  1/RP.  Invert you final answer. 

Current in Circuits:  Charge is conserved quantity.  If the battery pushes 1 A of charge it is pushing 1 C every second 
into the circuit.  Those charges must travel through the rest of the circuit at that rate and must arrive back at the battery at that 
rate.  So in a series circuit, with one path only, the rate that charges move must be the same everywhere.  So in a series circuit 
charge stays the same.  But, in a parallel circuit current arrives at a junction and splits up.  If 1 A arrives at the junction, then 
1 C is arriving every second.  Some charges will take one path, while the others will go the other way (ways).  But the 1 A 
splits up, so the current in each section of the parallel circuit must add up to 1 A.  You can’t have more current in the 
branches than you had leading up to the branches. 

Voltage in Circuits:  V = Ed.  So voltage depends on how far away you are from the battery.  If you have a 12 V battery, 
for example, the positive terminal is 12 V, while the negative terminal is 0 V.  As charges move through the circuit they fall 
away from the positive plate and towards the negative plate.  They are farther and farther away from the 12 V plate.  Each 
appliance or resistor uses up some of the voltage.  So every time there is resistance voltage is subtracted.  The voltage must 
drop to 0 V when the charges reach the battery, so the resistance in the circuit must use up, subtract all 12 V, in this example.  
In a series circuit the voltage of the resistors and/or appliances must add to the same value as the battery produces.  In a 
parallel circuit the current takes different paths but, but you travel the same distance from the battery regardless of the path.  
So in a parallel circuit voltage stays the same. 

Series Current stays the same (resistors in line slow traffic in the whole circuit)
1 2 3 ...SI I I I= = = =  

 Voltage adds 
1 2 3 ...SV V V V= + + + (cars are all pushed down a single path) 

Parallel Current adds 
1 2 3 ...SI I I I= + + +  (current can choose paths, but the total must split between paths available) 

 Voltage stays the same 
1 2 3 ...SV V V V= = = = (cars have an equal pressure down any path) 

Ohm’ Law: V IR=  for devices in electrical circuits. 
 
 
 
 Redrawn on the right to  
 match.the skier analogy 
 
 

 V I R 
Battery +21 V 12 A 1.75 Ω 
R1 -12 V 12 A 1 Ω 
R2 -9 V 9 A 1 Ω 
R3 -9 V 3 A 3 Ω 

Solve the problems on the DC Circuit Worksheet to become familiar with these and other similar computations. 

-9 V 
 9 A 
 1 Ω 

21 V 
12 A 
  0 Ω 

-12 V 
 12 A 
   1 Ω 

-9 V 
 3 A 
 3 Ω 

12 A 

0 V

+21 V

R3 

R2 

R1

Fig 18.2 

Fig 18.3

Fig 18.4 
Fig 18.5 
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Kirchhoff’s Rules: Useful for complicated circuits, where there may be more than one battery, and the directions of the 
batteries even oppose each other in portions of the circuit.  Refer to Fig. 18.4 and 18.5 on the previous page. 
1. The sum of the currents entering any junction in a circuit must equal 

the sum of the currents leaving that junction.  in outI I∑ = ∑ .  

This explains the parallel portion of the preceding circuit.  Let’s 
look closer at the parallel junctions in Fig 18.4, isolated and 
enlarged here in Fig 18.6. 
12 A of current enters the junction at point  A.  Charge is conserved 
so all 12 A must leave the junction at point  A.  The amount going 
down the two paths is controlled by and proportional to the amount 
of resistance.  The 1 Ω resistor receives 9 A, while the larger 3 Ω 
prevents current flow to a higher degree, and only receives 3 A. 
The current going through the two branches unites again at point  B.  
The 9 A and 3 A coming into the junction equals the 12 A leaving 
the junction. 

2. The sum of the potential differences across all circuit components 
of any closed loop must be zero.  0V∑∆ = .  Batteries and 
generators are thought of as pumps that raise the charges to a higher potential.  From this higher potential the charges can 
fall through the circuit and do work (light lights, run microwave ovens, etc.).  So, when charges move through a battery 
the voltage is positive.  When they are traveling back down hill, through the components in the circuit, the voltage is 
negative.  If you look at the chart below Fig 18.4, on the previous page, you will see that the signs on the voltages have 
been included.  Added together they total to zero.  After all, if the ski lift starts at the lodge and goes up 400 m, the ski 
runs better go down 400 m to finish there.  Otherwise the it will be a very strange resort. 

Electromotive Force:  ε  or  emf.  Not really a force.  It is a potential, or voltage, created to make electrons move. 
Sources of emf: A source of electric field (battery or generator), that makes electrons flow through the circuit.  Since  emf  is 
essentially an electric potential it substitutes into many equations that contain electric potential  V (voltage).  As an example: 
under certain circumstances  V IR=   can be written as  IRε = .  Let’s see when this is true. 

Internal Resistance: r.  Every device consists of wires that electricity must pass 
through, so every device has resistance.  This is true of sources of  emf  as well (batteries 
and generators).  The resistance of a battery or generator is known as internal resistance, 
and is denoted with a small  r  to distinguish it from the resistance of other components 
(capital  R).  Let’s look at a battery, with internal resistance, in the circuit in Fig 18.7.  in 
greater detail. 
The whole battery is drawn as a rectangle, from point  A  to point  B.  It consists of some 
plates where an electrochemical reaction generates electromotive force,  emf,  ε = 6V.  
However, the battery is not perfect.  It has an internal resistance of  r = 1Ω.  This internal 
resistance subtracts voltage from the  emf.  The voltage that is left over is called the 
terminal voltage.  It would be the voltage between points  A  and  B. 

Example 18-1: emf, Internal resistance, and terminal voltage. 
Treat this like any circuit problem.  You can use the rules for current, voltage, and resistance.  It is helpful to use a chart, 
like the one below Fig 18.4, on the previous page.  You can also use Kirchhoff’s Rules.  Just treat the internal resistance like 
any other circuit component.  This means it has negative voltage.  This is a series circuit  1 2 3 6s iR R= ∑ = + + = Ω .  Plug 

in  emf  and total  R  into  V IR= ,  6 1
6

V VI A
R

= = =
Ω

.  Since this is a series circuit (including  r),  1 2 3 ...SI I I I= = = =  

  V I R 
 emf +6 V 1 A 6 Ω 
 r -1 V 1 A 1 Ω 
 R1 -2 V 1 A 2 Ω 
 R2 -3 V 1 A 3 Ω 

Use  V IR=   to complete the each row of the chart.  
Notice that emf was used instead of the battery.  The 
reason is that the battery is composed of both the  emf  
and the internal resistance.  The terminal voltage of the 
battery is found using V Irε= − . 

 ( )( )6 1 1 5V V= − =  

When a problem says that internal resistance is negligible, then it is so close to zero as not to matter mathematically.  So,  

0V Irε ε= − = −   In this case  V ε= ,  and in these problems  V  and  ε  are completely interchangeable. 

R2 = 3Ω 

R2 = 1Ω 

I = 12 A 
A B 

I = 12 A 

I = 9 A 

I = 3 A 

Fig 18.6 

r = 1Ω 

R2 = 2Ω

R1 = 3Ω

ε = 6V 

A 

B 

Fig 18.7 
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3−19  RC Circuits 

Note: RC Circuits are needed for AP Physics C: physical science majors, calculus based. 

RC Circuits: Circuits containing both resistors 
and capacitors in series.  The circuit in Fig 19.1 is 
an RC circuit, composed of  emf  source  ε,  resistor  
R,  capacitor  C,  and switch  S.  The circuit in  
Fig 19.2 is a resistor circuit when the switch is in 
one position and a capacitor circuit when the switch 
is in the other position.  Do not start the math 
without looking closely at the diagrams.  We will 
focus on the RC circuit in Fig 19.1.  You already 
have the skills to solve the other circuit. 

Initial conditions: Before the switch is thrown, in Fig 19.1, there is no current in the circuit.  The battery produces an  
emf,  but the circuit is incomplete.  There is no electric field in the circuit and the charges lack a loop to follow.  There are no 
charges built up on the capacitor.  There is no resistance in the resistor. 

Instantaneous Conditions, Right When Switch is Thrown (time  t0): An electric field traveling at the speed 
of light extents from the positive terminal of the battery to the negative terminal.  The electric field accelerates charges 
(electrons moving opposite the field, from the negative terminal to the positive terminal.  They do not accelerate to the speed 
of light as they encounter resistance (much like a sky diver hits terminal velocity due to air resistance).  Initially there are no 
charges on the capacitor.  This means there are no charges repelling the first charges arriving at the capacitor.  So, the full 
current of these speeding charges move through the resistor.  Initially the circuit behaves as though the capacitor does not 
exit, as shown in Fig 19.3.  At this point the formula  V IR=   applies, if it is adapted to show  emf  and initial current  I0 (at 

time t0), as follows,  0I Rε = .  Then rearrange to solve for the initial current.  0I
R
ε

=  

A more formal approach uses Kirchhoff’s 2nd Rule: Potential around a closed loop adds to zero.  The potential 

of the battery minus the resistor and minus the capacitor must equal zero.,  0QV IR
C

− − = .  At this time there is no charge 

stored on the capacitor, so  Q = 0.  Substituting  0
0 0I R
C

ε ⎛ ⎞− − =⎜ ⎟
⎝ ⎠

,  and solving  0I
R
ε

=   leads to the same answer. 

Right now the potential Difference of the battery appears entirely across the resistor. 

At some time  t  later: Once charge begins to flow as a current, it is deposited on the capacitor.  The charges are loaded 
onto the capacitor very easily at first.  But, as the charges build up so does the electrostatic repulsion.  This process is a 
logarithmic process.  It begins quickly, with a lot of charge being deposited.  Then it becomes more and more difficult to 
fight the electrostatic repulsion and the charging gradually tapers off. 

The current in the circuit at some time  t  is solved using  t RC
tI e

R
ε −= .  The value  RC  has special significance.  It is 

called the time constant  τ,  where  RCτ = .  It is the time for the current to decrease to  1/e  of its initial value. 

Right now the potential Difference of the battery is split between the resistor and the capacitor. 

After a very long time: When a long time has passed the capacitor will become full.  As a result no current will flow in 

the circuit.  No current is flowing through the resistor, so it is as thought the resistor does not exist.  
QC
V

= .  Rearrange to 

solve for potential 
QV
C

= .  Using Kirchhoff’s 2nd Law would give the same result.  0QV IR
C

− − =   becomes  

( )0 0QR
C

ε − − =   which simplifies to  
QV
C

=  

Right now the potential Difference of the battery appears entirely across the  capacitor. 

Fig 19.1 

C 

R

ε 

S Fig 19.2 

C 

R

ε 
S 
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Capacitor Charge vs. Time Graph: Fig 19.3 shows the charge 
on the capacitor over time.  As discussed before the charge on the 
capacitor is zero initially.  When the current begins to flow the charges 
initially load onto the plates of the capacitor very quickly.  In the 
beginning there are few charges on the plates that would repel additional 
charges.  But, as the capacitor become more full the electric potential has 
to push charges against an ever increasing electrostatic repulsion.  It 
becomes harder and harder to load more charge.  Eventually the potential 
difference of the capacitor equals the potential difference of the battery.  
No more charges can load at this point.  The maximum charge on the 
capacitor at this point is Q Cε= .  It is shown as a dashed horizontal 

line marking the limit of charge on the graph.  When the time constant is 
reached the capacitor is 63.2% charged. 

Current vs. Time Graph: Fig 19.4 shows the current in the circuit 
over time.  Initially the current flows as though the capacitor is not present,  

0I
R
ε

= .  But, as the capacitor charges the current decreases over time, 

according to  t RC
tI e

R
ε −= .  Eventually when the capacitor reached a 

full charge the current stops entirely.  0 0I =  charge on the graph.  When 

the time constant is reached the current is at 36.8% of its initial value. 

Discharging a Capacitor: The battery is removed from the circuit, Fig 19.5.  The switch is 
thrown and the charge stored on one of the plates moves through the circuit and the resistor, 
toward the other plate.  This process continues until the potential difference, originally created by 
the capacitor, drops to zero.  Current flows very quickly at first, and then tapers to zero. 

The charge on the capacitor varies by t RC
tQ Qe−=  

The current in the circuit varies by t RC
t

QI e
RC

−= −   and  0
Q I

RC
=  

 

Q 

Cε

t 
τ = RC 

0.632 Cε 

Fig 19.3
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3−20  Magnetic Fields 

Magnetism: Magnetism is the result of spinning or moving charges.  Each electron and proton acts like a tiny magnet.  In 
most substances the protons and electrons balance each other in a manner that cancels the atoms overall magnetism.  But in 
some substances like iron there is an imbalance that is not cancelled.  In these substances the atoms act like tiny magnets.  If a 
group of these atoms line up with all their north poles in the same orientation the group or domain acts like a larger magnet.  
If the smaller domains all line up in a bar of iron, for example, then the entire bar behaves as a magnet, with a north pole and 
a south pole.  It is similar to electricity, where unlike poles attract, and like poles repel.  It is different from electricity since, 
separate poles cannot exist by themselves.  Magnetism and Electricity are interconnected.  Electric fields can influence 
magnets, and magnetic fields can influence moving charged particles and current carrying wires. 

Magnetic Field Direction In Relation to Fixed Magnets: The magnetic field  B  comes out of a north pole (like  
E  comes out of + charges) and goes into a south pole (like  E  goes into – charges).  It must leave and enter the poles 
perpendicular to the surface of the magnet.  The magnetic field direction is defined as the direction a north needle of a 
compass points.  The north needle points away from north and towards south.  So the Earth’s magnetic south pole is located 
near the Earth’s geographic north pole.  B  is a measure of magnetic field strength, and is analogous to  E  for electric fields, 
and  g  for gravitational fields. 

The Magnetic Field Around a Current Carrying Wire (Right Hand Rule, Case 1) 
A current carrying wire generates a magnetic field around 
it.  The direction of the field is the direction the fingers 
curl around the wire if the thumb points in the direction of 
the positive current.  The strength of the field is 

represented as follows: 
2

o IB
r

µ
π

=  This measures the 

field of a wire carrying a current  I  at a point in space a 
distance  r  from the wire.  This formula involves  r.  
Remember that  r  is used when a field radiates outward 
from a central source.  In electricity radial field are 
generated by spherical point charges.  In gravity radial 
field are generated by spherical point masses, such as planets.  This field radiates out from the wire as shown above right.  If 
you calculate  B  at point  P  using the formula above you have also calculated  B  at any point on the equipotential circle that 
P lines on.  In fact you have calculated  B  any point on a cylinder surrounding the wire at a radius  r. 

What about direction?  This is a three dimensional problem, that is diagrammed on paper.  
You can only diagram what is happening in the plan of the page above and below the wire.  We 
are working in a third dimension and must select a convention for depicting the magnetic field 
along the  z-axis.  Since  B  is a vector we will use an arrow (traditional vector symbol), Fig 19.2.  
When this arrow is coming at you, you will see the point.  So positive  z  is depicted as dot or 
circled dot.  When this arrow is going away from you, you will see the feathers.  So negative  z  is 
depicted as an  ×  or a circled  ×. 

Using this convention the field around a carrying wire (Case 1) would look like Fig 19.3. 

 

Example 6-1: Superposition of Magnetic Field due to Current Carrying Wires 
Calculate the magnetic field caused by two crossed current carrying wires at point  P  in Fig 19.4. 

( ) ( )
( )

7 62
2 10 4 10

2 0.1
o IB T

r
µ
π

− −= = × = × ,  +z 

( ) ( )
( )

7 53
2 10 1.2 10

2 0.05
o IB T

r
µ
π

− −= = × = × ,  -z 

Add vectors: ( ) ( )6 5 64 10 1.2 10 8.0 10 T− − −+ × + − × = − ×  

so it is 68.0 10 ,T z direction−× −  

P 

r 

I 
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The Force of Magnetism on Charged Particle (Right Hand Rule, Case 2) 
Charged particles are spinning and generate their own magnetic field and behave like tiny magnets.  If you fire them between 
two large fixed magnets they will be interact with the larger magnetic field.  When fields interact there is force.  The force is 
equal and opposite, as always.  The fixed magnets attract the particles, just as the particles are attracted to the fixed magnets. 

sinBF qvB θ=  Force on a charged particle (small  q,  point charge) traveling 

(velocity,  v) in a magnetic field (B).  You can drop sinθ if you know the angle is 90o.  
This force is only felt on the component of velocity perpendicular to the field.  The 
angle  θ  is the angle between the particles velocity and the magnetic field that it travels 
in.  In the example to the right the magnetic field is represented by arrows pointing in 
the  –y direction.  Particles  A  and  B  experience no force since they have a θ equal to 
0o and 180o.  Particle  C  experiences the most force (if all particles entered the field at 
the same speed) since θ = 90o.  Particle  D  will have a force equal to the component of 
its velocity that is perpendicular to the field.  Make sure thatthe problem gives you the 
correct angle, between the particle velocity and the magnetic field.  Problems often try to give the wrong angle to see if you 
are awake. 

B q= ×F v B   is a cross product of vectors.  In a cross product the greatest value is obtained when the vectors are 
perpendicular, allowing  sinθ  to reach its largest value of  1. 

Take another look at the problem on the previous page: The field  B  is going into the page (-z) at point  P.  If 
a positive charge  +q  is at this point and has an instantaneous velocity of 5x104 m/s, what is the magnitude and direction of 
force on the particle? 

( )( )( )19 4 6 201.6 10 5 10 8.0 10 6.4 10 ,BF qvB N y direction− − −= = × × × = × +  

Direction the Particle Will Deflect:  Use the right hand rule for positive charge and the left hand for negative charge. 
The charged particle will follow the right hand rule: The thumb is the charged particles velocity, the  
extended fingers represent the magnetic field, and the palm slapping represents the force that causes the  
charged particle to change direction.  Remember if a force hits you from behind and parallel to your  
motion, you speed up.  If a force hits you from in front and parallel to your motion you slow down.  If a  
force hits at a right angle to your motion, you change direction (either projectile motion, or circular motion  
depending on the field).  A positive charge is fired into a field in Fig 19.6.  The field  B  extends into the  
page,  -z.  Use the right hand rule tracing the path of the particle with the thumb, and keeping the fingers  
into the board.  It traces a semicircle with the palm  FB  pointing to the center of the circle. 

C BF F=  
2vm qvB

r
=  we can drop sinθ since all vectors are 90o

 apart 

A charged particle flying in a magnetic field will move in a circular path.  All vectors are perpendicular to each other. 
The force on a charged particle in a magnetic field is always perpendicular, so no work is done in this case.   

Charges Accelerated Through a Potential Difference that Subsequently Enter a Magnetic Field 
21 ( )

2
qV mv not given= In the electric field a charge  q  is accelerated through a potential 

difference.  It then enters a magnetic field.  In this case an electron is accelerated through the 
potential difference.  So you use the left hand to find the direction of the charge once it enters 
the magnetic field.  The direction is clockwise.  The force causing the electron into circular 

motion is  FE.  C BF F=  which leads to 
2

( )vm qvB not given
r
= .  Also the electron has a 

tangential velocity of 2 rv not given
T
π

=  and a centripetal acceleration of 
2

c
va
r

= .  

While work is done accelerating the electron (force through a distance) by the electric field, 
no work is done on the electron while it is in the magnetic field.  Substituting 90o into the 
work equation cosW F s θ= ⋅  gives an answer of 0W = .  At any instant the direction of motion (tangent) is 
perpendicular to the center seeking force  FB. 

What would a proton do?  The opposite.  In the above scenario the proton would circle counter clockwise.  The 
particle experiencing the motion can be switched, the plates & electric field can be switched.  Also the magnetic field could 
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be draw out of the paper.  Be prepared for anything.  Use the right hand for positive charges and the left for negative charges.  
Analyze the situation carefully! 

The Force of Magnetism on Current Carrying Wire (Right Hand Rule, Case 3) 
Note that this is different from case 1.  In case 1 we dealt with the magnetic field created by and surrounding a current 
carrying wire.  In this scenario we will put a wire into a magnetic field created by two large fixed magnets.  Then we will turn 
the current on.  The wire will then turn into a magnet as well.  The magnetic field of the fixed magnets will then interact with 
the magnetic field of the current carrying wire.  When fields interact there is a force.  The force will be equal and opposite, 
but the larger magnetic field is created by fixed magnets.  The smaller field will be in a wire which is free to move.  So the 
larger fixed field will cause the wire to jump.  This is the basis for the electric motor and for stereo speakers. 

sinBF BI θ=  is the force of a large fixed magnetic field on a current carrying wire where a length    of the wire is in 

the larger magnetic field.  Use sinθ as above. 
Direction the Wire Will Deflect: Use the right hand rule for positive 
current and the left hand for negative current.  Use the right hand rule in Fig 
19.8.  The thumb is the direction of charge movement, as before, except now it 
is charges  Q  moving in the wire to create a current  I.  So the thumb is the 
direction of positive current  I.  The fingers are held straight and are the 
direction of the magnetic field as before.  The direction the palm will slap is 
the direction of the force magnetic  FB.  For negative current use the left hand. 

Calculus:  Id= ×∫F B  

Electric and Magnetic Fields in the Same Location 
In some problems a region of space will hold an electric and a magnetic field.  Typically the electric plates that generate the 
electric field  E  are drawn, while the magnets that create the magnetic field  B  are located out of and into the page.  In this 
orientation the magnetic field is either in the  +z  or  – z direction, while the electric field is in either the  +y  or  –y direction.  
But, you can expect other variations of this configuration.  Lets follow a charge particle that enters this dual field. 
A proton traveling through the charged plates as configured would normally 
experience projectile motion.  The electric field extends downward from the 
positive plate to the negative plate (direction a positive test charge would 
move).  But, in this problem the proton continues in a straight line.  Since the 
force of the electric field is in the y direction, we should sum our forces in this 
direction. 

y E BF F F∑ = − +  The other force that is countering force electric is force 
magnetic, since this problem deals with two overlapping, but different fields. 
It is not moving in the y direction so the sum of force must be zero. 

0 E BF F= − +  E BF F=  qE qvB=  E vB=  

Example 20-1: Combining Some of the Key Problems into One 
 
 
 
 
 
 
 
 
 

 21
2

qV mv=  E BF F=  C BF F=  

 2qVv
m

=  qE qvB=  
2vm qvB

r
=  

 v  is constant for the rest of the problem. E vB=   B is in  -z-direction mvB
qr

=  
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3−21  Ampère’s Law 

Note: Ampère’s Law is needed for AP Physics C: physical science majors, calculus based. 

Ampère’s Law and The Magnetic Field Around a Current Carrying Wire (Case 1 revisited) 
Previously we learned that a current carrying wire generates a magnetic field that circles the wire and varies proportional with 
the distance from the wire.  If we integrate along the path of this circular field, by summing the magnetic field over very 

small distance it is found to be  0B d Iµ⋅ =∫ .  The permeability of free space to the magnetic field is  

7
0 4 10 T m Aµ π −= × ⋅ . 

It is useful for calculating the magnetic field around current carrying configurations that have a high degree of symmetry. 

Example 21-1: Magnetic Field Around a Current Carrying Wire. 
Solve for the magnetic field a distance  r  from a current carrying wire, in Fig 21. 

Use Ampère’s Law,  0B d Iµ⋅ =∫ .  As it is highly symmetrical  B  can be removed 

from the integral,  0B d Iµ=∫ .  The circumference of a circle is known, so integration 

is not necessary,  ( ) 02B r Iπ µ= .  Rearrange to solve for  B,  0

2
IB
r

µ
π

= , and we 

arrive at the algebraic version of the equation, that was given previously. 

Solenoid: A solenoid is a wire wound in the form of a helix, as shown in fig 21.2 

Magnetic Field of a Solenoid: A The magnetic field in a solenoid is strongest down the middle.  The direction follows 
the right hand rule.  The magnetic field is weak around the outside, and in many problems it may say that the field is 
negligible on the outside.  The magnitude of the field is  0SB nIµ=  

n  is the number of turns,  N,  in the solenoid per unit of length,  . 
Nn = . 

A solenoid is a tightly wound coil of wire 
where each successive coil touches the next 
coil.  This means that the diameter of the wire 
making up the solenoid is equal to the length 

of a single turn,  
1n

diameter of wire
= ,  

as shown in Fig 21.2. 

Magnetic Flux: The same principles and 
explanations apply to magnetic flux as they 
do the electric flux (see previous section on 

Gauss’s Law).  m dφ = ⋅∫B A .  This is a 

dot product.  The algebraic version is  

m BAφ θ= ⋅B A= cos .  Caution: remember that flux involves area.  When referencing areas angles are measured from 

a normal (line drawn perpendicular to the surface). 

Gauss’s Law of Magnetism: The net magnetic flux through any closed surface is always zero. 0d⋅ =∫ B A  

 
 
 
 
 
 

r 
d  

I 

Fig 21.1 

 of 10 turns = 10 wire dia. of 1 turn = wire dia.

dia. 

Fig 21.2 



Revised 8/29/06 76 © R H Jansen 

 



Revised 8/29/06 77 © R H Jansen 

3−22  Faraday’s Law of Induction 

Electromagnetic Induction (Right Hand Rule, Case 4) 
If a current carrying wire in a larger magnetic field can be made to jump, then could the reverse be true.  Could you force a 
wire to jump into a large magnetic field and then would this in turn cause a current to flow in the wire.  This is the basis of 
electricity production, and is how an electrical generator operates.  We must introduce a new quantity known as flux. 
Magnetic Flux: m B Areaφ = ⋅  The strength of a magnetic field moving through an area of 

space, such as a loop of wire.  There is an amount of gravity flux through the surface of the earth.  
There is electrical flux through the space between the plates of a capacitor, and around charged 
other charged objects.  There is magnetic flux around any magnet.  In simple terms the flux can be 
thought of as the amount of field lines passing through a defined area of space.  While the field lines 
aren’t really there they are a way of viewing the invisible field.  The more lines drawn, and the 
closer they are to one another the stronger the field and the greater the flux.  We will consider the 
flux through a single simple loop of wire that is located in a magnetic field, Fig.19.9.  The wire is full of tiny little magnets 
(charges).  If the wire is forced to move by us (nuclear power, hydroelectric, etc.) these tiny magnets are forced to move in 
the field.  The force of magnetism from the larger surrounding magnetic field, created by a large fixed magnet, will put a 
force on the tiny charges.  As the wire moves the charges move due to the force magnetic, causing a current to flow in the 
wire.  So a stationary loop generates no electricity.  Therefore you need a moving loop and as it turns out you need a 
changing flux.  You can change flux several ways: You can hold the magnet stationary and move the wire changing the area 
(into the field or out of the field).  You can rotate the wire in the field, also changing the area.  You could hold the wire 
stationary, and move the magnet, changing the field B’s strength as distance changes.  You could generate the magnetic field 
with another current carrying wire, and by changing the current, you also change the field strength. 

Faraday’s Law of Induction: m
avg t

φε ∆
= −

∆
 Changing flux means the charges in the wire experience a changing 

magnetic field.  An electromotive force is induced.  This ε causes the charges in the wire to move.  The charges are trapped in 
the wire loop and can only travel in a direction consist with both the force and the confines of the wire itself. 

Calculus: Faraday’s Law is formally written as  m
avg

d
dt
φε = − .  If the circuit is a coil consisting of  N  loops then the 

total induction is given by m
avg

dN
dt
φε = − .  In algebraic terms this becomes  m

avg N
t
φε ∆

= −
∆

 

Electromotive Force, emf: Induction creates electromotive force  emf  or  ε,  which really isn’t a force, rather it is 
electric pressure or voltage.  However, every device that generates electricity has a resistance, known as internal resistance.  
So  emf  is actually the amount of voltage that you could produce if there were no internal resistance in a battery, power 
supply, generator, or wire loop used to move a current.  If internal resistance is included then the equation for induced voltage 
is V Irε= − .  Use you’re rules for series circuits to deal with the small internal resistance.  Treat the internal resistance as 
a resistor that happens to be next to the battery or power supply.  In simple problems the internal resistance will be 
negligible 0Ir = , similar to a frictionless/airless mechanics problem.  Then V ε= . 

Lenz’s Law: A magnetic field can move charges in a wire by electromagnetic induction.  Once the charges start moving 
they generate their own magnetic field.  This new field attempts to counteract the original magnetic field, and is opposite in 
direction.  In order to have opposite direction the charged particles must move in a direction opposite the right hand rule.  So 
in electromagnetic induction the minus sign in the above equation is a reminder that the charges are moving opposite in 
direction.  Use the right hand rule as before, but reverse the direction of current. 

Example 22.1: Electromagnetic Induction  A solenoid with  N  turns,  length  ,  and current  I  is surrounded by a 

ring of conducting material.  What is the induced  emf  in the ring?  Combine m
avg

dN
dt
φε = − , m dφ = ⋅∫B A , 

0SB nIµ= , and 
Nn =  to produce 

0

avg

N IA
N

t

µ
ε = .  Simplfy to get 

2
0

avg
N IA

t
µε =  

B 

Wire 
Loop 

Fig 19.9
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Induction by Moving a Loop Into or Out of a Magnetic Field 
The loop, in Fig 19.10, is forced (palm pushing represents the 
direction the wire is forced) toward the right, with velocity  v.  
Look for the part of the loop that is cutting through field lines.  
This will induce the voltage necessary to move the current.  The 
front edge of the loop is cutting through  x’s  and thus induces a 
upward current in the leading edge of the loop at location  A.  The 
upward motion of charge in the front of the loop causes the rest of 
the charges in the loop to move as well.  The whole motion of 
charge, induced current is counter clockwise in the entire loop (remember Lenz’s Law and the reversal of current direction in 
induction). 

The induced voltage is m
avg t

φε ∆
=

∆
 φ = ⋅B Area  avg

B Area
t

ε ⋅∆
=

∆
 

The area of the loop in the field is growing, as the loop enters the field, and thus the flux is 
growing as well.  But, the amount of area changing every second is the same since the loop is 
moving at constant velocity.  The front edge of the loop cuts through the same number of field 
lines every second.  emf does not depend on the size of the area (flux does), rather it depends on 
the rate of change in flux.  This is constant, due to the constant velocity of the loop.  Once the 
entire loop enters the field, position  B,  a counterclockwise current is induced in the front edge 
of the loop, while a clockwise current is induced by the back edge.  The two opposite currents 
cancel each other.  When the front edge, position  C,  has left the field, the back of the loop creates a clockwise current.  The 
field is assumed to end at the edge of the  x’s,  or dots for the field drawn out of the page (+z).  It is assumed to be a uniform 
field inside the  x’s.  Graphically the induced emf is shown to the right. 

Metal Bar Sliding Across a Loop of Wire 
If you have a stationary loop of wire placed in a magnetic field, and a metal bar is dragged across 
the wire loop (Fig 19.12) an electromotive force is produced B vε = .  B is the magnetic 

field,    is the length of the bar, and  v  is the velocity of the bar.  This is derived using the 
formulas above. 

m
avg t

φε ∆
=

∆
 φ = ⋅B Area  avg

B Area
t

ε ⋅∆
=

∆
 

( )
avg

B d
t

ε
⋅∆ ×

=
∆

 avg
dB
t

ε ∆
= ⋅

∆
 B vε =  

Graphing Induced Electromagnetic Force m

t
φε ∆

= −
∆

 

Remember, current can only be generated by a changing flux.  So a closed loop of wire must move through the field, or the 
loop must be getting larger, or the loop must be rotating, or the magnetic field must be changing. 
 Loop moved thru Bar moved, enlarging loop Loop rotates 

 
( )B A
t

ε
⋅∆

=
∆

 B vε =  
( )B A
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∆
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3−23  Inductance, RL, and LC Circuits 

Note: Inductance is needed for AP Physics C: physical science majors, calculus based. 

Self Induction: When a circuit has a time varying current, an induced  emf  is produced.  This induced  emf  is in the 
opposite direction of the original current that created it.  Consider a simple (loop) circuit consisting of a battery, resistor, and 
a switch.  When the switch is thrown current begins to move.  This creates a magnetic field around the wires.  The circuit is 
closed and acts like a single turn loop.  The magnetic field induces an  emf  (a second current) in the loop.  Due to Lenz’s 
Law this second current counters the original current (reverse direction).  The induced current acts to slow the original 
current that created it.  This kind of induced  emf  is known as  self-induced  emf  or back  emf,  εL. 

Inductor: A device intentionally put in a circuit to generate a back  emf.  A coil of wire generates a stronger magnetic field 
than a plain wire.  As a result, a solenoid used in a circuit acts as an inductor.  Using Faraday’s Law the formula for 

inductance is  m
L

d dIN L
dt dt
φε = − = − .  L  is the inductance (a constant for a specific coil) measured in Henry’s (H).  The 

minus sign indicates that the induced  emf  is in the reverse direction of the original current. 

RL Circuits: A circuit composed of resistors and inductors.  We will assume that the wires 
in the circuit have negligible resistance and inductance.  Since the back  emf  opposes the 
original current,  inductor in circuits oppose changes in current in the circuit.  If the current 
wants to rise quickly, an inductor slows the currents rise.  If a current wants to stop quickly, an 
inductor keeps the current going longer. 

Using Kirchhoff’s 2nd Law sum all the potential differences of the circuit to zero,  
0R LVε ε− − = .  ε  is the  emf  (potential) of the battery,  VR  is the potential used by the 

resistor and  εL  is the potential used by the inductor.  Substitute,  0dIIR L
dt

ε − − = .  Use 

this formula to analyze the conditions in the circuit, Fig 23.1, after the switch is thrown.  Once charge begins to flow as a 
current the inductor generates a magnetic field.  This magnetic field creates a back  emf,  which opposes and slows the 
current.  The more current through the inductor, the greater the back  emf,  and consequently the more drastically the current 
is slowed. 

Instantaneous Conditions, Right When Switch is Thrown (time  t0): Charges attempt to flow very quickly.  
Inductors slow this change in current.  It is almost as though all the  emf  is used by the inductor, with no current going to the 
resistor. (This is the opposite of an RC Circuit, where the current initially goes to the resistor and the capacitor receives 

none.)  Plugging into kirchhoff’s 2nd Law,  ( )0 0dIR L
dt

ε − − = ,  and simplifying leads to  
dIL
dt

ε = .  Since  

L
dIL
dt

ε = − ,  then  Lε ε=   for just the instant that the switch is thrown. 

At Some Time  t  Later: Current at a time  t  is  ( )1 t
tI e

R
τε −= − ,  where the time constant is equal to 

L
R

τ = . 

After a very long time: Inductors only slow the changes in the circuit, they cannot prevent them.  Eventually the current 
reaches a value that is limited by the resistor in the circuit.  Plugging into kirchhoff’s 2nd Law,  ( )0 0IRε − − = ,  and 

simplifying leads to  IRε = .  So the current in the circuit after a long time is   I
R
ε

= . 

Fig 23.1 
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Current vs. Time Graph: Fig 23.2 shows the current in the circuit 
over time.  Initially the current flows as though the resistor is not present.  
The inductor slows the rate of change in the current.  Instead of rising to 
its final value instantaneously the current follows this the equation, 

( )1 t
tI e

R
τε −= − .  Eventually the current reaches its full value, which 

is governed by the resistor alone, I
R
ε

= .  At this point it is as though 

the inductor does not exist.   When the time constant is reached the current 
is at 63.2% of its maximum value. 

Current That is Trying to Stop: Fig 23.3 show a circuit with an additional switch.  When 
switch 1 is closed it operates as above.  Current attempts to flow quickly through the circuit, but 
is slowed in its start up by the inductor.  In this case we will allow the current has hit its final 
maximum value, and then we will throw switch 1 off and switch 2 on.  This disconnects the 
battery.  The current should die instantaneously, however inductors slow the change in current.  
Therefore the current will drop slowly in this scenario.  This time the following formula applies,  

t
tI e

R
τε −=   or  0

t
tI I e τ−= .  The inductor acts to oppose the decrease in current.  The 

graph of this scenario is shown in Fig. 23.4. 

Energy in a Magnetic Field: Since the inductor opposes the generation of a current, the 
battery must do work to create a current.  Some of the energy goes into internal energy 
in the resistor (it gets hotter), but the rest is stored in the magnetic field of the inductor.  

P IV= .  Adapt Kirchhoff’s 2nd Law,  0dIIR L
dt

ε − − = , by multiplying the 

potentials in it by current to change them into power,  2 0dII I R LI
dt

ε − − = .  

Rearrange,  2 dII I R LI
dt

ε = + .  If we converted these all these terms from power to 

energy, by multiplying by time, we would have a conservation of energy expression.  The energy contained in an inductor is 

given by the formula  21
2LU LI= .  This is a potential energy, as it is stored and has the potential to do work. 

Oscillations in an LC Circuit: LC circuits are composed of inductors and 
capacitors.  The circuit in Fig 23.5 shows the simplest case.  In this scenario the capacitor 
will be assumed to have a full charge.  The switch is thrown and the capacitor attempts to 
discharge quickly.  It acts as a source of  emf,  sending a current through the wires.  But 
the inductor acts to slow the discharge.  As the capacitor discharges it looses energy.  
Where does this energy go?  To the inductor.  Through conservation of energy C LU U=  

and thus 2 21 1
2 2

QV LI=  or 21 1
2 2

CV LI= .  The energy is now stored in a 

magnetic field around the inductor.  The magnetic field then collapses, as there is no current to sustain it.  This results in a 
change in flux in the inductor, which generates a current in the wires.  But, this collapse is the opposite direction of the 
original rising magnetic field from the capacitors discharge.  Therefore, the direction of this new induced current is the 
opposite of the original current created by the capacitor.  Now the capacitor begins to charge, but since the current is the 
reverse, the polarity of the plates is switched.  If the top plate were positive at the very start of this scenario, then the top plate 
is now negative.  Once the capacitor is fully charges and all the energy from the inductor has passed back to the capacitor the 
process begins again, and again…  (It is exactly like a spring that oscillated above and below the equilibrium position.  
Sometimes it is  +x  and sometime  -x.  The energy just keeps changing from potential to kinetic.) 

I 

ε/R

t 
τ = L/R 

0.632 ε/R 
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Nico Garcia-Bonaduce
3-99 is not a real chapter.  This is some hooligan ex-student who thinks it’s funny to put his name in the review.  He is correct.  It is hilarious.  Love you Jeff Rose!
-Nico�
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Unit 4  Wave and Optics 
4−24  Waves 

Waves Terminology: Waves transport Energy,  E.  Vibrating / oscillating objects create waves.  Waves must travel in 
a medium, except electromagnetic waves, which can travel in a vacuum.  Frequency,  f,  is the number of 
vibrations/oscillations, cycles, or revolutions each second.  Period,  T,  is the time for one complete vibration/oscillation.  
Wavelength,  λ,   is the length of a single wave, measured from a point on one wave to the exact same point on the next 
wave.  Period is also the time that it takes one wavelength to pass.  Amplitude,  A,  is the maximum displacement from the 
equilibrium position (not the top to bottom distance).  The positive amplitude peaks are known as crests, while the negative 
regions are known as troughs. 
Transverse waves: Look like the traditional sin waves, shown 
in Fig 24.1.  The vibrating particles, that cause the wave, 
oscillate in a perpendicular to the wave direction. 
Longitudinal Waves: Compression, or Shock Waves where 
particles vibrate in a direction parallel to wave direction.  
Longitudinal waves have compressions and rarefactions, 
similar to crests and troughs.  All waves have the above characteristics, and all waves can be diagrammed as a Sinusoidal 
Function.  A pulse is a single wave.  A continuous wave is a series of equal pulses. 
Standing wave: Created when a continuous wave strikes a barrier and 
reflects back upon itself.  Any wave hitting a hard boundary reflects with 
a 180o phase change.  In phase waves have the same wavelength and 
speed.  Their crests line up with each other.  They are in step with each 
other.  A 180o phase change means that the crests of one wave are lined up 
with the troughs of another.  The reflected wave collides with the next 
incoming wave and superimpose, creating a standing wave.  Nodes do not 
move at all, while antinodes are points of maximum amplitude.  A wavelength is composed of two antinodes. 

Wave speed depends on the medium: v f λ= depends on the elasticity of the medium.  Sound travels faster in 

metal than in water and faster in water than in air.  Light is unusual, it is fastest in a vacuum, slows slightly in air, and moves 
slowest in denser mediums.  As long as the medium does not change wave speed is constant.  If speed is constant and 
frequency doubles, what happens to wavelength?  It is cut in half.  Frequency and wavelength have an inverse relationship. 
The equation v d t=  also applies to sound and light waves.  You can time the distance to lightening by counting the 

seconds between flash and thunder.  When timing sound that makes a round trip (echo or sonar), divide the final answer by 2. 

Interference: When two or more waves meet, their amplitudes add. 
Constructive Interference: If the waves are in phase they will add constructively creating 
a wave with larger amplitude. 
Destructive Interference: If the waves are out of phase they will add destructively 
creating a wave with smaller or even zero amplitude.  The waves shown to the left have 
the same amplitude and wavelength. But, two waves could have different speeds, 
wavelengths, amplitudes, or phases and add with any combination of these.  Therefore a 
host of complex new wave forms can be generated.  Music is one such example. 

Sound: The speed of sound in air at 25o C is 343 m/s (often rounded to 340 m/s).  The speed of sound changes with 
temperature since the density and elasticity of air change as temperatures fluctuate. Pitch is frequency and loudness is 
amplitude 

Resonance: Natural frequency of vibration, and the basis of musical instruments.  Resonance is employed to create louder 
and richer sounds from string and tube musical devices.  We will only consider the mathematical application of the 
fundamental resonant frequency, the frequency associated with the smallest possible fraction of a wavelength that will fit in a 
string or tube.  Multiples of the fundamental frequencies wavelength would also work, and are known as overtones.  We will 
not work with the overtones. 

Strings 
½ wavelength 

Open Tubes 
½ wavelength 

Closed Tubes 
¼ wavelength 

v f λ=  and 2Lλ =  

2v f L=  

v f λ=  and 2Lλ =  

2v f L=  

v f λ=  and 4Lλ =  

4v f L=  

Wave direction of travel

AmplitudeWavelength 

Trough 
Crest Vibration 

Direction

Fig 24.1

Antinode Amplitude 

Wavelength 

Node

Fig 24.2

Fig 24.3 
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Electromagnetic Radiation (Light): Travels in packets of energy, called Photons.  A vibrating charge, surrounded 
by both an electric and a magnetic field creates electromagnetic waves.  Once created the oscillating electric and magnetic 
field, which are perpendicular to each other, can self sustain each other and as a result can travel through the vacuum of 
empty space.  We see only visible light, which is a very small portion of the entire electromagnetic spectrum.  The entire 
spectrum from weakest to strongest is: 
Radio Waves Microwaves Infrared (IR) Visible Ultraviolet (UV) X-Rays Gamma Rays 
Low energy, low frequency, long wavelength High energy, high frequency, short wavelength 
Visible light follows ROY G BIV from low energy to high energy.  So Blue light has higher energy than red light. 
To see light, the waves must be aimed straight into our eyes to excite the photoreceptors at the back of our eyes.  The colors 
we see are the waves of light that reflected off of an object.  The colors that are not present are the ones that passed through 
the object or were absorbed by the object.  Grass absorbs red and blue light needed for photosynthesis, and it reflects the 
unnecessary green wavelengths. 

Law of Reflection: i rθ θ= .  All optical angles are measured in relation to a normal line.  A normal is a line 

perpendicular to the surface (Force Normal is perpendicular to the surface).  When a surface is curved the normal is 
perpendicular to a tangent to the curved surface.  It is diagrammed as a dashed line. 

Ray, smooth surface Parallel rays, smooth surface Rough surface, Diffuse reflection 
 
 
 
 
 
On a smooth surface such as a mirror the incident parallel rays of light reflect parallel, and the image formed is identical to 
the object.  But on a rough surface the incident parallel rays are sent in all directions and the image will be diffuse (fuzzy). 

Transmitting Light: EM waves not only travel in vacuums, but that is where they are fastest.  The speed of light in a 

vacuum,  c,  is 83 10c m s= × .  The Index of refraction,  
cn
v

=   was devised as a comparison value.  It compares the 

speed of light in a medium a the known speed in a vacuum.  The index of refraction for light in a vacuum is 1.00, and the 
index can never be less than one.  The index of refraction for air is 1.0003, which rounds to 1.00airn = . 

Refraction: The bending of light as it changes mediums.  The speed changes, but the frequency does not, v f λ=  so 

the wavelength changes causing the path of the light to bend.  Less to more, bends toward. 

Less dense to more dense Light slows Frequency same Wavelength shortens Bends toward normal 
More dense to less dense Light faster Frequency same Wavelength lengthens Bends away from normal 

Snell’s Law: 1 1 2 2sin sinn nθ θ=  Given the speed in one or both mediums, the indices of 

refraction or angles can be determined.  With three pieces of information the fourth can be determined 
mathematically.  Fig 24.5 shows light moving from a less dense medium to a more dense medium.  n1  
and  θ1  go with the incident medium while  n2  and  θ2  go with the refracted medium.  Blue light with 
its higher energy, higher frequency, and lower wavelength bends more than red light.  It will bend more 
toward the normal (less to more), and it will bend more away from the normal as well (more to less). 

Total Internal Reflection: A special case of Snell’s Law.  If the incident angle is of a certain size 
it will result in a 90o angle of refraction.  
This incident angle is called the critical 
angle cθ .  At incident angles equal to 

or larger than the critical angle the light 
reflects back into the substance.  So the 
light at the critical angle or greater is 
totally internally reflected.  Medium 1 
contains the incident ray so  θ1  is the 
critical angle and  θ2  is 90o.  This only 

works when you go from a dense to less dense medium. 

1 2sin sin 90o
cn nθ =  1 2sin cn nθ =  2

1

sin c
n
n

θ =  

θr θi Fig 24.4 

n2 

n1 

θ2 

θ1 

Fig 24.5 

Less 
dense 
medium 90o 

θc 

θ is larger than θc.  
Rays are reflected 

Fig 24.6 
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4−25  Geometric Optics 

Lenses and Mirrors: Mirrors reflect light and lenses transmit light.  They both fall into two main categories.  
Converging lenses and mirrors converge parallel rays of light on the focal point, and thus the focus is  +f.  Diverging lenses 
and mirrors diverge parallel rays of light away from the focus, with a  -f.  The shapes, convex and concave are secondary, but 
must be memorized. 
Converging Lense, +f Diverging Lense, -f Converging Mirror, + f Diverging Mirror, - f 
Convex Lense Concave Lense Concave Mirror Convex Mirror 

 
 
 
 
 
 
 
 

Spherical Lenses and Mirrors: We are working with lenses & mirrors that have been cut from spheres.  Each curved 
surface has a center of curvature.  The focal point is located half way between the center of curvature and the lens or mirrors 
surface.  Focal distance is measured from lens or mirror surface to the focal point.  2F r=  and the distance to the center 

is 2C F= . 

Ray Tracing: Remember light goes through the lens, while it bounces off mirrors. 
Rules for Lenses: Rays arriving parallel to the optical axis, either converge on the far focus or diverge from the near 
focus. 
 Rays that go through the center of the lens keep going straight. 
Rules for mirrors: Rays arriving parallel to the optical axis, either converge on the near focus or diverge from the far 
focus. 

Rays arriving through the focus, go out parallel. 
Rays that go through the center of curvature bounce (C = 2F) bounce straight back. 

Images: Two types of images are formed by light interacting with lenses and mirrors.  To find the location and the size of 
an image use ray tracing practiced in the following worksheet.  If the forward ray traces touch (converge to create an image) 
the image is considered real and has a positive distance from the lens,  +si.  Real images can be projected on a screen.  Real 
images are always inverted.  But, when rays diverge (separate) the forward ray traces will not intersect.  You then must draw 
a back ray trace through the other focus.  In this case the image is virtual, and since it resulted from the intersection of the 
negative ray traces it has a negative distance,  −si.  Virtual images are always upright. 

Converging Lens / Mirror: 
Object outside of focus 

Converging Lens / Mirror: 
Object at focus 

Converging Lens / 
Mirror: Object inside of 

focus 

Diverging lens / Mirror 

Real Images, +si No Image: si = ∞ Virtual Image, −si 
Inverted,  −hi, and −M f = so Upright, +hi, and +M 

 
Geometric Optics 

2
rf =  The center of curvature is located at  2f.  So the focal point is half of the radius.  

1 1 1

o if s s
= +  Shows the 

geometric relationship between the focal length, object distance, and image distance.  i i

o o

h sM
h s

= = −  Relates the 

magnification to the height of the object and image, and the distance to each.  The only conversions needed are in cases 
where you lack unit agreement.  Variables are either all the same or they cancel out.  Centimeters are commonly used in 
optics.  The magnification formula tells the relationship between  si  and  hi.  These variables always have the opposite sign.  
Remember negative  M  does not mean the image is smaller.  It means the image is upside down.  0.5x  is a smaller image 
and upright, while  –2.0x  is a larger inverted image. 

For example problems complete the Geometric Optics Worksheet. 
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4−26  Wave Nature of Light 
Diffraction: When light hits the edge of a barrier, as shown in the left 
diagram in Fig 26.1, it will bend around it.  If the barrier is small compared 
to the wavelength of light the light will pass the barrier uninterrupted.  Like 
water flowing around a buoy.  But, if the barrier is large compared to the 
wavelength of light the waves will bend around the edge of the barrier in a 
circular fashion.  Imagine water waves hitting the end of a jetty, or going 
through a hole in a jetty. 

Slit Width: The smaller the opening the more pronounced the circular 
effect, as shown in the right diagram in Fig 26.1. 

Huygen’s Principle: Every point on a wave front can be considered as a 
source of tiny wavelets that spread out in the forward direction 
at the speed of the wave itself.  The wave front is formed by the 
constructive interference of the circular wavelets, as shown in 
Fig 26.2. 
So, if the barrier has a hole in it, the particles of the wave create 
new circular wave fronts when they exit on the other side.  This 
is why you get the circular patterns shown on the previous page. 
The particles of light that create this diffraction pattern are the 
photons.  Each photon generates circular wave fronts that 
constructively interfere to generate linear wave fronts. 

Young’s Double Slit Experiment: Young shined a monochromatic light source on two very narrow slits.  He used 
a monochromatic light source, since white light consisting of all the colors would result in a rainbow refraction.  Light has 
the same characteristic pattern as water waves and is evidence that light behaves as a wave.  Light from two slits interferes 
with each other.  As a result you get dark and light bands if the pattern is shown on a screen. 

Interference Fringes: The bands of light and dark that appear at regular intervals, as shown in Fig 26.3.  They follow a 

geometric relationship described by the following equations. sind mθ λ=  m

m L
x

d
λ

≈  

d  is the distance between the slits. 

m  is the fringe number.  m = 0  is the central 
maximum.  It is also the path difference in 
wavelengths. 

Whole numbers are used for the bright Constructive 
Interference Fringes.  m = 0.0, 1.0, 2.0, 3.0, etc. 

Half numbers are used for the dark destructive 
interference fringes.  m = 0.5, 1.5, 2.5, 3.5, etc. 

θ  is the angle from the midline (from the middle 
fringe). 

L is the distance from slits to the screen. 

xm  is the distance from the midline (center fringe) to 
the fringe being measured. 

The second formula  m

m L
x

d

λ
≈   is only approximately equal. If  sin mx

L
θ = ,  then  sind mθ λ=   would become  

mx
d m

L
λ= .  This would simplify to  m

m L
x

d

λ
= .  But  sin mx

L
θ =   is not true.  xm  is the opposite and  L  is the adjacent. 

So  tan mx

L
θ =  is the true equality. But, as long as the angle is small  sin tanθ θ≈ ,  and then we can use  m

m L
x

d

λ
≈ . 

m 

Fig 26.1 

Fig 26.2 

Dark

Light 

Dark

Light 

xm

 

m = 0

m = 1

m 

d 
θ 

L 

Fig 26.3 
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Needs to travel ½ 
wavelength to 
match other wave

Air  n1 = 1.00 

Coating  n2 = 1.33 

Glass  n3 = 1.50 

Fig 26.5 

Thin Films: Most people are familiar with the rainbow effect seen when a thin oil/soap film is floating on top of water. 
The phenomenon can also be seen in the thin film coatings that give modern sunglasses their protective properties. The 
thickness of a thin film and the density of the film and the mediums around it, combine to create the thin film optical effect. 
Important background information to keep in mind. 

• Denser mediums have higher indices of refraction. 
• A reflected ray will change phase by 180o when going from a medium with a low  n  to a medium with a high  n. 
• A reflected ray going from a medium with a higher  n  to a medium with a lower  n  is a soft boundary reflection. 

Case 1: The middle medium has the greatest density.  
Example: Oil Suspended On Water: Light moving from air to oil and 
then to water. It goes from low density (low  n) to a high density (high  
n), and back to a lower density (lower  n). Two beams of light shown as 
dashed lines strike the thin film, in Fig 26.4. One reflects off the air-oil 
boundary. The high to low index of refraction change is like hitting a 
hard boundary. This causes a 180o shift in the outbound reflected light 
wave, as seen on the left in Fig 26.4. This is similar to the wave 
reflection in a guitar string that is tied down, creating a hard boundary. 
The right light wave makes it through the first surface and reflects off 
the second surface. The change from oil to water is from more to less 
dense and the index of refraction gets smaller. This is like hitting a soft boundary, such as air reflecting in an open tube. If the 
thin film has an exact thickness the two outbound light waves will be in phase. Waves in phase constructively interfere 
creating a larger wave. In the case of light it creates a brighter light. If the wavelength is an observable color our eye would 
see a brightening of that color. In the diagram above this occurs when the film is ¼ of a wavelength. 
Problem: The oil film is 1x10-7 m (100 nm) thick,  n1 = 1.00,  n2 = 1.50,  n3 = 1.33. What wavelengths will results in 

maximum intensity?  1
4film filmthickness λ=  ( ) ( )7 74 4 1 10 4 10 400film filmthickness m nmλ − −= = × = × =  

Caution: You have now found the wavelength in the film (the oil). Your eye will see the color in the air, so this wavelength 
needs to be converted from oil to air. There is a formula that converts wavelengths based on the index of refraction 

1 1 2 2n nλ λ= .  Rewritten to match this situation:  
air air film filmn nλ λ=  ( )( )

( )
1.5 400

600
1.0

film film
air

air

n nm
nm

n
λ

λ = = = . 

Is there any destructive interference? Yes, if the thickness of the film is changed to ½ of a wavelength  

Conclusion: When  n1 < n2 > n3 Constructive Interference: ( )4film filmthicknessλ =  

 Destructive Interference: ( )2film filmthicknessλ =  

 Followed by 
air air film filmn nλ λ=  film film

air
air

n
n
λ

λ =  

Case 2: Mediums With Progressively Higher Densities 
At both boundaries the change is to a higher density (higher  n), so there are 
two 180o reflections. Here the film needs to be the thickness of ½ wavelength 

to get maximum intensity.  1
2film filmthickness λ=   It is the reverse of the above 

scenario. Even multiples of ¼ wavelength create constructive interference, 
while odd multiples of ¼ wavelength create destructive interference. 
Problem: The sunglass coating 2x10-7 m thick,  n1 = 1.00,  n2 = 1.33,  and n3 = 
1.50. What wavelength will result in maximum intensity? 

( ) ( )7 72 2 2 10 4 10 400film filmthickness m nmλ − −= = × = × =  

air air film filmn nλ λ=  ( )( )
( )

1.33 400
532

1.0
film film

air
air

n nm
nm

n
λ

λ = = =  

Conclusion: When  n1 < n2 < n3 Constructive Interference: ( )2film filmthicknessλ =  

 Destructive Interference: ( )4film filmthicknessλ =  

 Followed by 
air air film filmn nλ λ=  film film

air
air

n
n
λ

λ =  

Air  n1 = 1.00 
Oil  n2 = 1.50 

H2O  n3 = 1.33 Needs to travel ¼ 
wavelength to match 
other wave

Fig 26.4
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Unit 5  Modern Physics 
5−27  Atoms, Energy Levels, and Photoelectric Effect 

Electromagnetic Radiation: In the previous review sheet we discussed the electromagnetic spectrum. 
Maxwell: Derived a famous series of four equations that could completely describe electromagnetic effects.  His equations, 
which were a compilation of the work of many other famous scientists, showed the existence and predicted the speed of these 
waves.  However, you won’t need the equations now.  You can enjoy this chapter of physics in college. 
Atomic Theory 
Thompson: Designed the Cathode Ray Tube (CRT), the basis for TV and computer monitors. In the partially evacuated tube 

he had two electrical terminals, thus creating an electric field. When a 
potential difference was created between the electrodes (plates) he 
witnessed an eerie beam that came from the negative (cathode) plate 
and went to the positive plate. Creating a hole in the positive plate 
allowed the beam to pass through and strike the end of the tube. He 
surmised the existence of negative particles that must have come from 
inside the atom. The stream of particles could also be bent by an 
intervening magnetic or electric field. The atom was no longer 
recognized as the smallest entity in the universe. The particles making 
up the beam were called electrons. 

Milikan Oil Drop: He charged oil drops with the newly discovered negative particles. He then sprayed the oil drops 
between two charged plates. He could adjust the potential difference between the 
plates until the oil drops were suspended in mid air.  This means that the force up = the 
force down.  So the electric force up = the gravity force down.  Eq mg=  so 

mgq
E

=   By finding the mass of the oil drop and noting the strength of the electric 

field he could calculate the excess charge on the oil drop.  He performed the 
experiment many times.  He noted that the charge was always a multiple of 1.6x10-19 C and he never found a value smaller 
than this.  So he concluded that this is the charge on the electron.  After all charge comes in quanta, or whole number 
quantities.  There are no half electrons. 
Rutherford: Fired alpha particles at gold foil.  Around the foil he placed a screen sensitive to alpha particles.  He thought the 
heavy and fast alpha particle would fire right through the foil.  While most did, he did note that many rebounded from the 
foil.  He likened this to shooting a cannon at tissue paper and having the shell bounce back.  He postulated that the atom was 
mainly empty space, but that there was a small dense nucleus comprised of positive particles (protons) located at the center.  
The empty space would account for most alpha particles passing through.  The positive nucleus would explain how the 
positive alpha particles were bounced back.  He did calculations based on the various trajectories of the alpha particles, and 
he was able to predict the relatively small size of the nucleus.  His model of the atom was similar to the solar system 
(planetary model) with the nucleus (sun) at the center and the electrons (planets) orbiting at a great distance. 
Einstein: Postulated that light has a particle nature, and travels in packets of energy known as photons. 
Planck: Found the energy of a photon.  E hf= .  The energy of a photon is Planck’s constant (h) x frequency. 

Emission Spectrum: It was noted that when gaseous elements were placed in a tube at near vacuum and a potential 
difference was placed at the ends of the tube (Thompson CRT) different colors were seen.  When shot through a diffraction 
grating the colors showed up as discrete lines with dark areas in between.  Formulas were worked out for Hydrogen, the 
simplest element and the placement of the lines fit a mathematical pattern. 
Bohr: He predicted that the atom was similar to Rutherford’s model, but Bohr added the concept of energy levels.  The fact 
that atoms only emitted certain frequencies of light implied that the electrons could only occupy certain discrete energy 
levels.  And these electrons could never be in between these energy levels.  When photons strike an atom, the electrons 
(normally in the ground state) of the atom absorb the energy.  These electrons (excited) now have higher energy and thus 
move to higher energy levels within the atom.  When the electrons returned to the ground state photons are emitted since the 
electrons loose energy.  But the electrons may drop to a variety of levels on the way back to the ground state.  This explains 
the many colored lines in the emission spectrum and the calculations matched those of the emission spectrum.  The Bohr 
Model of the atom is outdated & incomplete, but it is still used to visualize the atom. 

e- 
Bfield 

Charged oil drop 
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Debroglie: Felt that since light can act as both a particle (photon) and a wave, perhaps electrons (a particle) can have a wave 
property as well.  He calculated the wavelengths of electrons h pλ = and found that theoretically an electron in the 

lowest energy level has one electron wavelength in a standing matter wave.  An electron in the second energy level 
completes two wavelengths, etc.  This resulted in the Wave Mechanical Model of the Atom.  So the electrons were not 
jumping from energy levels as Bohr had surmised, rather they were changing wavelength when bombarded by photons. 
Heisenberg: Postulated that you can never know both the location and the momentum of an electron simultaneously.  His 
Uncertainty Principle states that you cannot find an electron or predict what it will do, since if you shoot photons at 
electrons to see what their doing the photons interact with the electrons changing their location and / or their speed. 
Schrodinger: Performed the calculations to narrow down the possible locations that electrons may be found in an atom.  
These statistical shells that electrons occupy are the basis of the current Electron Shell Model of the Atom. 

Einstein: Found the mass energy equivalence ( ) 2E m c∆ = ∆ .  Even though a photon is really mass-less energy it does 

have a mass equivalence.  So if its energy can be converted to a mass value, then the photon can be given a mathematical 
momentum.  So Planck’s equation is updated.  E hf pc= =  

Energy Level Calculations: Bohr’s model has been updated, but the energy levels still hold mathematically. 
If a photon of the right frequency and energy were to strike the lone electron in 
hydrogen while it is in the ground state, the electron would then acquire all of 
the photons energy.  The photon is absorbed by the atom.  The energy of the 
photon determines how much energy the electron receives and thus determines 
the energy level that the electron is boosted to.  Perhaps the electron would 
receive enough energy to be excited to the 3rd energy level as shown in process 
A.  This excited electron would be unstable and would eventually return to the 
ground state, but not necessarily in one leap.  It could conceivably drop all the 
way back releasing a photon of the same frequency and energy as the one that 
struck the electron boosting it out of the ground state.  Or it might drop to the 
2nd energy level first (B), and then finally drop back to the 1st energy level (C).  
This two-step return will result in two photons that have different frequencies, 
and these photons are also different from the photon that hit the electron 
initially. Photons are emitted from the atom.  Here are some of the energy 
levels of a hydrogen atom.  The atom is small, so energy is measured in 

electron volts. 

Drawing a circular atom is tedious.  The following covers the same scenario as detailed above, but includes the mathematical 
steps and an additional step D.  Remember this is only one scenario, there are many energy levels. 

A: Absorption of a photon.  The hydrogen atom is bombarded with 
light of frequency, 2.92x1015 Hz.  

( )( )15 154.14 10 2.92 10 12.1E hf eV s Hz eV−= = × ⋅ × =  

As a result an electron in the ground state, -13.6 eV is boosted to the 
second energy level, -1.5 eV.  In this case it drops to the first energy 
level and then drops back to the ground state.  Lot’s of possibilities 
exist. 
B: Emission of a photon.  The electron falls to the first energy level, a 

drop of 1.9 eV.  This corresponds to a frequency of, 

( ) ( )15 141.9 4.14 10 4.59 10f E h eV eV s Hz−= = × ⋅ = ×  

A photon of light is emitted from the atom with this frequency.  This 
generates a distinct band of light on the emission spectrum. 

C: Emission of a photon.  Next the electron falls back to the ground 
state, a drop of 10.2 eV.  This corresponds to a frequency of, 

( ) ( )15 1510.2 4.14 10 2.46 10f E h eV eV s Hz−= = × ⋅ = ×  

A photon of light is emitted and this generates a distinct band of light on the emission spectrum. 
D: Ionization.  If a photon strikes a hydrogen atom electron in the ground state with more than 13.6 eV the electron receives 

enough energy to leave the atom entirely.  The hydrogen atom lacking its electron becomes an ion.  Therefore, this 
energy is referred to as the ionization energy.  (Also called the work function.  See below.) 

D 

C 

B 

A 

-1.5 eV 

-0.00 eV 

-0.85 eV 

-3.4 eV 

-13.6 eV Ground State 

B 

C A 
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Example 27.1: Energy Levels: Absorptions 
This hypothetical atom is struck by a photon,  f = 1.93×1015.  Fig 27.5 details the flow of energy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 27.1: Energy Levels: Emissions 
This same atom is eventually looses this extra energy.  Fig 27.6 details all the possible energy transitions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n=1 

n=2 

n=3 
n=4 

Edge of atom: not an energy level 

-10eV 

-4eV 

-2eV 
-1eV 
0eV 

Ground State: energy of electron only 

Excited States: Energy of 
electron + photon 

Emission: The electron drops to a lower energy level, loosing energy in 
the form of a photon.  The electron can drop to any level, or 
combination of levels, below its current level.  This means that one 
wavelength and frequency may be absorbed while others are emitted.  
Since some of the drops are shorter than the original absorption they do 
not involve as much energy.  Therefore the emitted photons can have 
lower frequencies and longer wavelengths. 

8 eV 

2 eV 

6 eV 

( )
( )
( )
( )

14
15

2
4.83 10

4.14 10

1240
620

2

eVEf Hz
h

hc nm
E eV

λ

−
= = = ×

×

= = =

 

( )
( )
( )
( )

15
15

8
1.93 10

4.14 10

1240
155

8

eVEf Hz
h

hc nm
E eV

λ

−
= = = ×

×

= = =

 

( )
( )
( )
( )

15
15

6
1.45 10

4.14 10

1240
207

6

eVEf Hz
h

hc nm
E eV

λ

−
= = = ×

×

= = =

 

Fig 27.6 

n=1 

n=2 

n=3 
n=4 

Edge of atom: not an energy level 

-10eV 

-4eV 

-2eV 
-1eV 
0eV 

Ground State: energy of electron only 

Excited States: Energy of 
electron + photon 

Incident (incoming) 
Photon with 
f = 1.93×1015 Hz 
λ =155 nm 

Absorption: The photon strikes the electron and is absorbed by the electron.  
The electron gains the energy of the photon and the energized electron moves 
to an excited energy level.  The up arrow denotes an absorption.  The energy 
of the photon is equal to the energy difference of the electron. 

Important:  The energy formulas do not calculate the energy levels of 
electrons.  They calculate the energy added of subtracted from electrons.

( )( ) ( )
( )

15 15 1240
4.14 10 1.93 10 8 8

155
hcE hf eV and E eV
λ

−= = × × = = = =  

8eV 

Fig 27.5 
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Photoelectric Effect: Young’s Double Slit Diffraction experiment provided evidence that light exhibited wave 
properties.  The photoelectric effect provided evidence of lights particle behavior.  If light is shined on certain photoelectric 
materials a current can be induced.  This requires the light to have enough energy to knock electrons out of the atoms, so a 
current can flow.  This is the basis of solar energy.  This process requires a certain minimum energy, known as the work 
function φ.  So if a photon E hf=  strikes a photoelectric material some of its energy is required to move the electron 

completely out of the atom.  This is the energy needed to ionize the atom.  The kinetic energy given the electrons is the 
energy left over after the ionizing energy, work function, is subtracted from the photons energy. maxK hf φ= −  

In photoelectric effect a photon hits a photo (light) sensitive substance.  If 
the light hits with sufficient energy it boosts electrons past all the energy 
levels and the edge of the atom.  If there is any extra energy left over 
after reaching the edge of the atom the electrons keep the excess energy.  
The excess energy is kinetic energy as the electrons are knocked out of 
the atom.  If electrons have kinetic energy they are moving.  If they are 
moving they are a current.  A current flowing means electricity is 
flowing. 

Stopping potential (VS): The variable power supply is put in the circuit 
to test the strength of the electric current created by the photon collisions.  
The power supply is put in backwards and is adjusted until the current in 
the circuit is zeroed out (ammeter reads zero).  If it takes  4.5V  volts of 
electric potential (pressure) to cancel (stop) the photoelectrons from 
flowing then the photoelectric effect must be creating a potential of 4.5V 
in the opposite direction. 

Kinetic Energy (Kmax): The amount of kinetic energy the electrons have 
is easily determined from the stopping potential.  If VS = 4.5V, then Kmax 
= 4.5eV.  These are different variables with different units, but 
conveniently they share the same numerical magnitude (value). 

Work Function (φ): The amount of energy needed (work that must be 
done) to get the electron out of the atom.  Also known as ionization 
energy. 

maxK hf φ= −   : The energy that electrons have when they leave the 
atom depends on how much energy the photon had that hit it and how 
much of the photons energy was used to get the electron out of the atom. 

Threshold (minimum or cutoff) frequency: If the photon has too little 
energy the photoelectrons do not get out of the atom.  So there is no Kmax. 

maxK hf φ= −   0 hf φ= −  

Graphing Photoelectric Effect 

maxK hf φ= −   is the equation of a line. 

y mx b= +  

 

A 
Ammeter: 
measures 
current

Incident Photon: 
E hf

hcE
λ

=

=
 

Variable 
power supply 

max

max

max

incident photonsK E

K hf
hcK

φ

φ

φ
λ

= −

= −

= −

 

f 

Kmax 

0.0 eV 

-2.0 eV 

+2.0 eV 

Threshold  f 

y intercept 

Slope is  h 

Edge of atom.  
Zero.

Stuck in atom. 
Negative. (see 
energy levels on 
other side) 

Escaped atom 
with kinetic 
energy.  
Positive.
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5−28  Nuclear Physics 

Nucleons: Proton Positive charge +e = 1.6 x 10-19 C mp =  1.6726 x 10-27 kg 
  Neutrons Neutral charge   q = 0 mn =  1.6749 x 10-27 kg 

???? Mass difference between a proton & a neutron (1.6749 x 10-27  -  1.6726 x 10-27  =  2.3 x 10-30) 

It is almost the mass of an electron.  A neutron is made of a proton and an electron that have fused.  This explains why 
the neutrons are neutral.  As for the mass not quite adding up, see 2E mc= . 
Atomic Mass Number (A)  =  # Nucleons 
Atomic Number  (Z)  =  # Protons 
Neutron Number  (N = A-Z) =  # Neutrons 

Isotopes: Same # of Protons, different # of Neutrons 12
6C  13

6C  14
6C  

Unified Atomic Mass  (u) 
C-12 =  12.00000 u   1.00000 u =  1.66054 x 10-27 kg 
E  =  m c2    100000 u =  931.5 MeV 

Binding Energy: Total mass of a stable nucleus is less than the component protons and neutrons 
He: lists as 4.002602 u, but when the protons, neutrons, and electrons are added separately it totals to: 4.032980 u 
When  He  is formed some mass turns into energy: ∆E  =  ∆m c2, Mass Defect  =  ∆m  =  28.30 MeV 

Total Binding Energy: Mass difference, amount of energy required in order to break the nucleus apart. 

Average Binding Energy per Nucleon: Divide Total binding energy by the number of nucleons. 
Highest for Iron:  Requires the most energy to split this nucleus, most stable 
Hydrogen: Used in fusion, Energy drops from  Fe  to  H. Binding energy released: Powers stars 
Uranium: Used in fission, Energy drops from  Fe  to  U. Binding energy released: Nuclear power & bombs 

Strong Nuclear Force: Force holding nucleons together 

Radioactivity: Disintegration / decay of unstable nucleus.  Certain isotopes are unstable and emit rays (radiation). 
• The Electric Force acts over entire nucleus.  It results from the repulsion of all the protons.  Neutron are not involved in 

the electric force. 
• The Strong Force is a short-range force.  It holds the individual nucleons together.  Both neutrons and protons attract 

due to this force. 
• So adding more neutrons can help hold the nucleus together, since they do not contribute to the repulsive electric force.  

There is however an ideal amount of neutrons, not too many and not too few that each nucleus needs in order to be 
stable.  If this number is out of balance the nucleus can deteriorate spontaneously. 

• The larger the nucleus the greater the electric force.  The distances become too large for the strong force to hold the 
nucleons together.  The balance of force favors electric force. 

• Transmutation: Occasionally parts of the nucleus are repelled out with great force and speed.  When part of the 
nucleus is ejected the Parent nucleus changes into a  Daughter nucleus 

Alpha ( )α  Decay: Results when an α Particle,  He  nucleus 4
2 He  is spontaneously ejected from the nucleus.  The 

nucleons comprising the alpha particle are strongly bonded to each other and they eject as a single packet. 
226 222 4
88 86 2Ra Rn He→ +  

Beta ( )β Decay: Results when there are too many neutrons compared to the ideal number required to maintain the 

electric / strong force balance.  A neutron is a proton and an electron that have been fused together.  So if there are too many 
neutrons one of them can split, forming a new proton (adding to atomic number) and a nuclear electron, known as a β- 

particle 0
1e− .  This particle has a very low mass and picks up all the energy of this transmutation.  It is ejected at an 

extreme speed.  Being smaller and faster than the alpha particle it has more penetrating power and is thus a more hazardous 
form of radiation. 14 14 0

6 7 1C N e v−→ + + .  One by product of this reaction is a positron (anti-electron).  The existence of this 
anti-matter particle lead scientists to postulate the existence of a fourth fundamental force, the Weak Nuclear Force.  Don’t 
worry about the positron on this exam. 

Gamma Rays:  Electrons around the nucleus can be found in excited states.  It turns out that nucleons can exist in 
excited states as well.  If a nucleon drops to a lower energy state a tremendous energy is released, since the energy 
differences in the nucleus are huge.  This results in the emission of extremely high energy photons. 

A
Z X   12

6C  or just 12C  
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Half Life: Length of time for half of the sample to decay.  See worksheet that follows this section. 

Law of Conservation of Nucleon Number: Total # of nucleons remains constant 

Nuclear Reactions: Nucleus is struck by a particle.  Causes transmutation 
Enrico Fermi: Neutrons most effective projectile particle.  No charge, not repelled. 

Fission 
Hahn and Strassmann: Bombardment sometimes made smaller particles 
Meitner and Frisch: Realized that Uranium split in two 
Liquid drop model: Neutron added to nucleus increases energy.  Increases motion of individual nucleons.  Abnormal 

elongated shape.  Short range Strong Force is weakened.  Electric Repulsive Force dominates.  2 Fission Fragments 
result.  Also some free neutrons are given off.  Tremendous amount of energy released.  Fission fragment plus 
neutron are substantially lower in energy than original U 235 

Chain Reaction: 2 to 3 neutrons freed collide with other 235U 
Self Sustaining Chain Reaction: Nuclear Reactor 

Moderator: Need slow neutrons, with the right speed 
Enriched Uranium: To increase probability of 235U fission 
Critical Mass: Mass of fuel large enough to compensate for lost neutrons 
Multiplying Factor: 1 or more neutrons must go to next reaction. 

Subcritical: Less than one neutron goes on 
Supercritical 

Control Rods: Cadmium  or  Boron.  Absorb neutrons 
Delayed Neutrons: Come from fission fragments 
Core: Fuel plus moderator.  2 - 4 %  235U 

Problems 
Thermal pollution: Disposal of radioactive fission fragments.  Radioactive interaction with structural components.  

Accidental release of radioactivity into atmosphere.  Leakage of radioactive waste.  Life time of 30 yrs due to 
build up of radioactivity.  Earthquakes.  Limited supply of fissionable materials 

Breeder Reactor: Some neutrons produced are absorbed by  238U.  239Pu  is produced, and is fissionable.  So the 
supply of fuel can increase 100 times.  However, Plutonium is highly toxic and can readily be used in bombs, 
and it involves a graphite moderator, as was used in Chernobyl. 

Fusion: Building up nuclei 
Sum of energy of nucleus is less than sum of energy of its component parts 
Elements may be result of fusion in stars 
Proton Proton Cycle 

1
1

1
1

1
2H H H e v+ → + ++

   0.42 MeV 

1
1

1
2

2
3H H He+ → +γ    5.49 MeV 

2
3

2
3

2
4

1
1

1
1He He He H H+ → + +  12.86 MeV 

 4 2 2 21
1

2
4H He e v→ + + ++ γ  

Carbon Cycle: Similar method in hotter stars, can make heavier elements 

Thermonuclear Device: Fusion Devices 
• Stars are under tremendous gravity 
• Creates tremendous pressure 
• High pressure means high temperature 
• High temperature means particles collide violently 

On earth high temperatures and densities not easily achieved 
Fission Bomb can ignite Fusion Bomb: Thermonuclear Device or H bomb 

Plasma: Need high density as well as temperature.  Ordinary materials cannot contain plasma 
Magnetic Confinement: Tokamak Reactor.  Break even point: Output equals input 
Inertial Confinement: Pellet of deuterium and tritium.  Struck simultaneously by several lasers 
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Unit 6  Conclusion 
6−29  Kinematics, Force, and Energy Comparison 

What is the object doing?  What direction is it moving in (if two find x and y components)?  Is it moving at constant v (this includes v = 0)?  Is it accelerating?  What is causing 
it to do that?  Force?  Energy change?  See if energy solves the problem first.  Then think force and kinematics.  Some common motions are discussed in the following pages. 

Situation Kinematics Force Energy 
Constant Velocity 
 
 
 
 
 

Need constant velocity 

xv
t

=  

 or 
 
x vt=   

0F∑ = .   
Forces are vertical, while 
motion is horizontal 

gF mg=  and NF mg=  

 

Inertia only.  No force.  No energy needed. 

cosW F d θ= ⋅  Where θ is the angle between F and d vectors. 

cos90oW F d= ⋅  

0W =  
 

Accelerating in x 
 
 
 
 
 
 
 
 

x o xv v at= +  

( )2 2 2x o oxv v a x x= + −  

21
2o o xx x v t at= + +  

In projectile motion  

 o xx v t=  

There is a sum of force 

F ma∑ =  
 

x p retardingx x
F F F∑ = −  

 example 
 x p frx

F F F∑ = −  

 

A force through a distance. 

cosx xW F d θ= ∑ ⋅  Where θ is the angle between F and d vectors. 

cos0oW F d= ⋅  No retarding forces present 

W F d= ⋅  Now work is done, so there is a ∆ energy. 

W Energy= ∆  

( )21
2

W K m v= ∆ = ∆  The only thing changing is velocity, so K is changing. 

Accelerating in y 
 

y o yv v gt= +  

( )2 2 2y o oyv v g y y= + −  

21
2o o yy y v t gt= + +  

Horizontal projectile or 
dropped object 

 21
2

y gt=  

y g retarding y
F F F∑ = −  

 example 
 y g air resistanceF F F∑ = −  

y yW F h= ∑ ⋅  Includes retarding forces 

gW F h= ⋅  No retarding forces 

gW U mg h= ∆ = ∆  Height is changing, so U is changing. 

( )21
2

W K m v= ∆ = ∆  Velocity is changing, so K is changing. 

( )21
2

mg h m v∆ = ∆  2 21 1
2 2

i fi fmgh mv mgh mv+ = +  

FN 

d or x Fg 

v 

Fret 

h or y 
Fg 

g 

Fret 

FN 

Fg 

a 

d or x 

FP 
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Situation Kinematics Force Energy 
Inclines 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kinematic Equations Apply 

x o xv v at= +  

( )2 2 2x o oxv v a x x= + −  

21
2o o xx x v t at= + +  

 

y o yv v gt= +  

( )2 2 2y o oyv v g y y= + −  

21
2o o yy y v t gt= + +  

Motion is parallel to slope 

Acceleration down the slope is 
caused by the addition of Fg and 
FN.  The resultant of these two 
vectors is Fgsinθ.  Since the 
natural motion is down the slope 
set that direction as +.  In some 
problems it is useful to reverse 
this (if the object is going up 
hill). 

sing retardingF F Fθ∑ = −  

cosNF mg θ=  

Work and energy can work parallel, in the x, and in the y 

W F d= ⋅  Force and distance vectors form similar triangles. 

x xW F d= ⋅  Work depends on F and d being parallel. 

y yW F d= ⋅  So any pair of parallel vector will solve the problem 

( )21
2

W K m v= ∆ = ∆   

gW U mg h= ∆ = ∆  

( )21
2

mg h m v∆ = ∆  2 21 1
2 2

i fi fmgh mv mgh mv+ = +  

Down a curve 
 
 
 
 
 
 
 
 
 
 
 

Kinematics Fail 

The net force is changing as 
the vectors Fg and FN 
change.  In addition the 
direction is changing. 
 
Acceleration is changing. 
 
The Kinematic Equations are 
designed for changing 
velocity, but only work for 
uniform (constant) 
acceleration. 
 

Force Fails 

The net force is changing as the 
vectors Fg and FN change. 

Energy is directionless. 

( )21
2

W K m v= ∆ = ∆   

gW U mg h= ∆ = ∆  

( )21
2

mg h m v∆ = ∆  2 21 1
2 2

i fi fmgh mv mgh mv+ = +  

A very important case. 

21
2

bottomtopmgh mv=  No initial velocity moving to a height of 

zero. 
Pendulum or Swing 
 
 
 
 
 
 
h R y= −  

2 2 cosy R x R θ= − =  
 

Kinematics Fail 

See accelerating down a 
curve above. 
 
The velocity is zero at either 
end. 
 
 
The velocity is greatest at the 
lowest point 

Force Fails 

See accelerating down a curve 
above. 
 
The restoring force is greatest at 
the ends, as is the acceleration. 
 
The restoring force is zero in the 
middle, and so is the 
acceleration. 

Energy is directionless. 

( )21
2

W K m v= ∆ = ∆   

gW U mg h= ∆ = ∆  

21
2

bottomtopmgh mv=   

y 

x 

a 

Fret 
FN 

Fg 

a = 0 
constant 
velocity from 
this point on 

Less steep, a 
decreaseing 

Steep slope, large a 

h 

y 
x 

R 



8/29/06 95 © R H Jansen 

 

Situation Kinematics Force Energy 
Object on string, 
Vertical loop 
 
 
 

Tangential Velocity 
Instantaneous velocity is 
tangent to the circlular 
motion. 

2 rv
T
π

=  

Acceleration is toward 
center, centripetal. 

2

c
va
r

=  

Center seeking. 
Force is centripetal, Fc, is the 
sum of force in circular motion.  
Toward center is +. 
 
Find tension at the top. 
 c T gF F F= +  

Find tension at the bottom. 
 c T gF F F= −  

Unlike previous scenarios, the object definitely has velocity at the top. 

There is a height difference from top to bottom, but the object has speed at the top 
as well.  And the bottom may not necessarily be the lowest point in the problem 

2 21 1
2 2 fitop top bottom bottomfi

mgh mv mgh mv+ = +  

Object on string, 
Horizontal loop 
 
 
 
 
 
 
 
 

Tangential Velocity 
Instantaneous velocity is 
tangent to the circlular 
motion. 

2 rv
T
π

=  

Acceleration is toward 
center, centripetal. 

2

c
va
r

=  

Center seeking. 
Force is centripetal, Fc, is the 
sum of force in circular motion.  
Toward center is +. 
 
Find Fc by adding vectors (tip 
to tail).  Then solve for FT. 

 2 2
T c gF F F= +  

No work is done 

cosW F d θ= ⋅  Where θ is the angle between F and d vectors. 

cos90oW F d= ⋅  

0W =  
 
At any instant the direction of motion (tangent to the circle) is perpendicular to 
the center seeking Fc, the FT, and the Fg. 
 
And for one revolution there is no total displacement from the origin, since a 
single revolution brings you back to the starting point. 

Object turning on flat 
surface 
 
 
 
 
 

Tangential Velocity 

2 rv
T
π

=  

2

c
va
r

=  

Why is there circular motion? 
Object not sliding off disk, or 
car turning on a road. 
 c frF F=  

 

No work is done 

See above. 

Roller Coaster 
 
 
 
 
 
 

Need uniform slope 
Kinematics only work on 
sections that have constant 
slope. 

If the track is curved try 
energy. 

Force centripetal in the loop. 
To find the speed needed to 
have passengers feel weightless 
at the top of the loop 

c gF F=  

Energy works everywhere, with its directionless advantage.  You can solve for 
any point  A  using any other point  B.  Use the complete equation.  The car will 
usually have both speed and height at every point.  An exception is the lowest 
point on the track, or if it starts with zero velocity at the top of a hill (this is 
unlikely since roller-coasters don’t stop at the top of each hill).  If it has velocity 
and height at the top you need to include both. 

2 21 1
2 2A A B Bmgh mv mgh mv+ = +  

v 

FT 

ac 

Fc 

Fg 

FT 

FT Fg 

Ffr 

Fg 
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Situation Kinematics Force Energy 
Spring 
 
 
 
 
 
 
 
 

Kinematics Fail 
See Down a curve, and 
Pendulum above. 
 
The velocity is zero at 
maximum +/- x (amplitude)
 
The velocity is greatest at x 
= 0 

Force Fails 
See Down a curve, and 
Pendulum above. 
 
The restoring force is greatest at 
maximum +/- x (amplitude). 
 
The restoring force is zero at x 
= 0, and so is the acceleration. 

Energy is directionless. 

( )21
2

W K m v= ∆ = ∆  ( )21
2SW U k x= ∆ = ∆  

If it starts at maximum x (amplitude) and it converts all the springs energy into 
speed of the object pushed / pulled by the spring 

 2 21 1
2 2

kx mv=  2 2 2 21 1 1 1
2 2 2 2

i i f fkx mv kx mv+ = +  

Particle accelerated 
by electric field 
 
 
 
 
 
 

Potential difference. 

Velocity increases. 
Positive charges go in the 
opposite direction. 
But, + particles are more 
massive, don’t accelerate as 
quickly, and have lower 
final velocities. 

The force of the electric field 

 F qE=  

 

Electromagnetism: New forms of energy, but energy is still conserved. 

W Energy= ∆  21
2

W K mv= ∆ =  

EW U qV= ∆ =  

21
2

qV mv=   2 21 1
2 2

i fi fqV mv qV mv+ = +  

Charged particle 
parallel to plates 
 
 
 
 
 
 

It acts like a projectile 

xox v t=  

21
2

y at= get a from F 

Electric field is perpendicular 

Particle is forced toward the 
plate with opposite sign. 

FE
q

=   F qE=  

F ma∑ =  ma qE=  

Work is done in the direction of the electric field. 

W F d= ⋅  
 
W qE d= ⋅  

Charged particle in a 
magnetic field 
 
 
 
 
 
 
 

Path curved by field. 

If the field is large enough 
the particle will follow a 
circular path. 

2 rv
T
π

=

 
2

c
va
r

=  

Forced to center by field. 

c BF F=  

2vm qvB
r
=  

No work is done 

cos90oW F d= ⋅  

0W =  
At any instant the direction of motion (tangent to the circle) is perpendicular to 
the center seeking Fc, and the FB. 
 

 

v 

m 

m 

m 

x=0 +x -x


